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This book is designed to show you how to make the graph or visualization you want as quickly and painlessly as possible.
It is organized to lead you directly to the gnuplot script that will create the result you have in mind; these are working
scripts ready for you to copy, paste, and modify for your problem. With this in mind, I have arranged the contents, as far
as possible, into an interactive reference that will allow you to touch the result you are aiming for and be taken directly to
a working script that produces that result. After years of using and helping others to use gnuplot, I’ve learned that starting
with a script that gets you 90% of the way there, and making obvious changes, is far easier than trying to remember all of
the details of gnuplot’s syntax and the tricks, accumulated over the decades, to bend it to your will. This is especially true if
you turn to gnuplot occasionally, instead of working with it every day.

That being said, this is not merely a collection of recipes. Through the use of progressively more complex examples, and
clear explanations of how things work, this book will provide you a thorough understanding of the program. The sections
on using gnuplot with other programming languages, integrating it into LATEX in various ways, and using it on the web, are
places where we will need to go a bit beyond the simple example → script structure, but full, working examples will still be
provided.

Gnuplot has a built-in help system and official documentation; there exists an excellent book about data analysis, with a
focus on gnuplot, and a paperback reference manual. My gnuplot web page has news about the program and links to many
online resources. Despite the abundance of material available about gnuplot, however, the book you are reading now serves
a unique purpose. This book is mainly intended for the user who needs to create or modify a graphic for a presentation or
a paper, and, as is usually the case, is in a bit of a hurry. There us no time to read a thick reference manual while trying
to guess which section actually tells you how to do what you need to do. You might try a search on the web, but you may

http://www.gnuplot.info/documentation.html
http://www.amazon.com/Gnuplot-Action-Understanding-Data-Graphs/dp/1933988398
https://www.amazon.com/Gnuplot-Reference-Manual-Thomas-Williams/dp/9881443644/
http://lee-phillips.org/gnuplot
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not even know the name for the type of graph or effect you have in mind, and, if you do find something that looks useful,
it’s likely to be far out of date. Gnuplot 5 is a big advance over even the most recent major version, and has been available
for only a small fraction of gnuplot’s lifespan to date; consequently, the vast majority of online gnuplot tips refer to older
versions.

I hope you will find this book to be a valuable resource of a kind that does not exist anywhere else. All the features of
gnuplot 5 are gathered together here in one unified, organized document. One of the unique features is a visual index, where
you can browse for the type of visualization you need and click on it to be taken to a working, tested gnuplot script. You
don’t need to guess what jargon to search for, or even know ahead of time that gnuplot can create the graph that you have
in mind.

My publisher and I have decided to issue gnuplot 5 exclusively as an electronic book. This decision was partly due to my
experience with my previous gnuplot Cookbook: the electronic versions were more useful than the paper version, in which
the various types of figures did not uniformly reproduce well on paper. Another consideration is that this is not a book
that one is likely to spend much time with on the beach or while relaxing in a hammock, but rather to use while one is
working at the computer, actually engaged in the process of making graphs; therefore having the book in electronic form,
with the ability to directly copy and paste solutions, is bound to be more useful. Extensive use is made of hyperlinks to
make navigation as easy and useful as possible. Colored text indicates a hyperlink, with different colors used to distinguish
between internal and external links, similarly to the styling of most web pages.

We are aware of the main drawback of the PDF format: the text does not flow to fit the viewing window; the page’s aspect
ratio is fixed. Unfortunately, the usual attempt at a remedy is worse than the disease: the typography of non-pdf ebooks
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ranges from mediocre to unreadable. This may not be a fatal flaw for books of pure prose, and I myself have read entire
novels in conventional ebook form on phones, with pleasure. But this type of book, with a mix of code samples, prose,
equations, and various types of color figures that must be kept in the correct association with the text, requires the exacting
typographical control that is only possible using PDF. We have tried to compensate for the rigid nature of the format by
offering several versions of the book customized for different screen dimensions. Your purchase entitles you to try out and
download any and all of these, so that, whether you are using a laptop or a tablet, you should be able to find a version that
works well on your device.

We use no DRM whatsoever. Your purchase gives you the right to use the book online as often as you please, and to
download it and make as many backup copies, on servers (the “cloud”) or on your own media, as you desire. You may install
and use the book on any and all of your devices. We only ask that you remember that this is a copyrighted work, created
by expending a great deal of time, effort, and money, and refrain from any type of public distribution. Not only would
this be illegal, but would make it harder for us to support the book in the future, to keep it available online, to incorporate
corrections in later editions, etc. That being said, neither the publisher nor I have any problem with you lending a copy of
the book to a colleague; it does belong to you, after all. If you are reading a copy that you’ve borrowed, and think that you
would like to hold on to it for a while, please consider visiting the publisher’s website and purchasing your own copy. We’ve
tried to keep the price low enough to keep it within reach even of graduate students. Not only is buying your own copy the
right thing to do, but it gives you the opportunity to give us your email address so we can keep you informed (if you want)
of updates, corrections, and online-only extra material as we develop it.
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About the name

The name of the program starts with a lower-case letter: “gnuplot”. To avoid a certain awkwardness, I’ve decided to capitalize
the name of the program at the beginning of sentences, and in the book’s title.

The name does not refer to the GNU free software project.

Why gnuplot?

Gnuplot is a free, open-source plotting program that has been widely used since 1986. It forms the graphics back-end used
by many other programs, so you may have used gnuplot without knowing it.

Gnuplot was originally intended to visualize scientific data, but its use has expanded to encompass every domain where a
sophisticated, accurate, and efficient plotting are required. Gnuplot is used in the sciences, engineering, mapping, business,
finance, and computer server and network performance monitoring.

Gnuplot excels at complex three-dimensional graphing and at the rendering of surfaces and contours. It can produce
almost any type of graph imaginable (even pie-charts, with coercion, if you insist) for a dizzying array of output devices.
You can save your plots in any type of file format that you can imagine. It can be installed on almost any type of computer
system in current use; there are binaries available for Windows and the sources can be compiled on most reasonably modern
machines. Gnuplot can easily be automated. It has its own scripting language that can be used for single plots, for analyzing
data, and for sophisticated programming to handle everything fromdata streams to animation. Gnuplot can also be controlled

http://gnuplot.info/faq/faq.html#x1-70001.2


Lee Phillips: Gnuplot 5 2nd ed. Preface xviii

from any other programming language, using either a custom library or communication over a socket interface.

Gnuplot can also be folded into various publishing and documentationworkflows to help create professional books, papers,
and online documents.

No specialized knowledge is required to make use of this book; although we may take examples from various fields, they
are incidental to the examples, which are focused on creating particular types of graphs. The examples of controlling gnuplot
from programming languages teach general approaches that can be understood even if you don’t have experience with the
languages used.
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This is a short chapter explaining how to install gnuplot on the most common operating systems. If you already have
gnuplot version 5 installed and working, you might as well skip this chapter. You may already have gnuplot 5 installed, if
you have a recent version of a program that uses it as a component, for example Maxima or Octave. If this is the case, using
that version may be easier than installing from scratch. However, if some feature that we describe in this book doesn’t seem
to be working in your version of gnuplot, you may need to upgrade to v. 5.1 or 5.2, or recompile to ensure that the desired
features are included—see the compilation notes in this chapter.

Linux

The package management systems of many Linux distributions include the gnuplot binary, but the version is usually some-
what old. In particular, version 5, the subject of this book, as not yet made it into the latest edition of some popular distribu-
tions. Although you can certainly make good use of a version from the 4.x series, and while much of the content of this book
will still apply, it’s worth it to acquire the latest version. There are many useful features in gnuplot 5 that make it easier to
use and more powerful. Also, some of the syntax has changed, so some of the scripts in this book will not work with earlier
versions.

To get the latest version of gnuplot running on your system, download the source code from the official repository,
and configure and compile by following the included instructions. These are universal sources that should work on any
supported operating system. You may have to attempt the compilation several times as you discover you are missing some
dependencies (the Pango and Cairo development libraries, for example), but these can all be added through your package

http://maxima.sourceforge.net/
https://www.gnu.org/software/octave/
https://sourceforge.net/projects/gnuplot/files/gnuplot/
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manager. After compilation has completed, check the logs or give the command set term to gnuplot to make sure that your
desired output devices are included. For high quality output for print or electronic publication, you should see one or both
of the pngcairo or pdfcairo terminals in the list. Finally, check that you can use the up-arrow and other readline features at
the gnuplot interactive prompt; if this doesn’t work, then a compatible readline library was not found on your system during
compilation. Check the compilation log for more details.

OS X

Compilation on the Macintosh is typically more problematic than on Linux, due to the presence of old or incompatible
libraries on the system. Apple, for a while, even included a mislabeled, nonstandard readline library. It is, however, possible.
An easier route is to install via Homebrew, the “missing package manager” for the Macintosh. Perhaps even easier is to
download Octave and look around in the .dmg file for the included gnuplot binary. At the moment, however, there is an
immediate solution: at the gnuplot homepage there is a link to “contributed executables for OSX” that includes .dmg archives
for the most recent versions of gnuplot.

Windows

The Windows user can try to compile from sources (see the Linux section above), but there is a simpler way to install: the
download page usually includes a link to a compilation of a recent version. The .exe can sometimes be found within the
“testing” folder.

http://brew.sh/
http://gnuplot.info
https://sourceforge.net/projects/gnuplot/files/gnuplot/
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Some Compilation Notes

After compiling, try doing “make check.” If nothing else, it’s entertaining.

In order to make the required header files available to the compiler, make sure you have installed the -dev versions of the
required libraries.

Some packages that are easy to overlook, and needed to compile gnuplot 5 with nice set of features, are lua, liblua-dev,
libx11-dev, libpango-dev, and, for reading images, make sure libgd-dev, v>=2, is available.



Chapter 1

2D Plots
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This chapter covers various types and styles of two-dimensional (2D) plots in gnuplot. A 2D plot is a visual description
of the relationship between two variables, whether that relationship is described by a mathematical function or a set of
data. As in future chapters, we’ll start with simple examples and gradually get more complex, showing, along the way,
how to customize the graphs’ appearance and the information that appears on it. As new commands or syntax elements
are introduced, we’ll highlight those elements in the code listings to make it easy for the eye to pick out the new material.
We’ll do this in a way that doesn’t affect your ability to copy-and-paste the code to get a working gnuplot script, ready to
be adapted to your application.

You can try out these scripts in two ways: you can save each script to a file, and tell gnuplot to execute it, or you can paste
the script into the interactive prompt. The latter way may be better for experimenting and learning the system, but each way
comes with its own caveat. If you are saving the scripts to files, you can run them by typing gnuplot file, substituting
the name of the file for file. If you do this, however, you may not see any output, or get a brief glimpse of your plot
before it vanishes. This is because the plot window for most on-screen “terminals”, as gnuplot calls its output devices, goes
away when the gnuplot process exits. To prevent this, invoke the program with gnuplot --persist file. The caveat
that applies to using the interactive prompt is this: some of the lines of code in our examples change various settings. These
changes will persist in your session, but each script is intended to be self-contained. Therefore it’s probably best to give the
command reset before starting a new example; this will wipe out any settings (well, most of them) that you’ve altered, and
is (mostly) equivalent to ending the session (with ctrl-D on Linux and other Unix-like systems) and starting another one.

Another, and quite wonderful, way to interact with gnuplot has recently appeared: a gnuplot kernel for the Jupyter
notebook. This provides a browser-based interface to gnuplot that is very convenient for exploration and notekeeping.

https://github.com/has2k1/gnuplot_kernel
https://jupyter.org/
https://jupyter.org/
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Plotting a Function
Here’s a mathematical function that you’ve probably seen before. Gnuplot knows quite a
lot of math, so we can just say its name to get a graph:

plot sin(x)


plot sin(x)
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Setting Ranges
That was simple. Notice how gnuplot decided to plot our function from -10 to +10. That’s
the default, which we got because we didn’t ask for any particular range. Gnuplot also
set the y-axis limits (the range of the vertical axis) to encompass the range of the function
over that default x-axis domain. Let’s take control of the limits on the horizontal axis (the
new command is highlighted). Gnuplot happens to know what π is (but doesn’t know
any other transcendental numbers).

set xrange [-pi : pi]

plot sin(x)


set xrange [-pi : pi]
plot sin(x)
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You may want to set the range of the vertical axis as well, either to show only a part of
the function or data, or to leave extra room on the graph.

set xrange [-pi : pi]

set yrange [-2 : 2]

plot sin(x)


set xrange [-pi : pi]
set yrange [-2 : 2]
plot sin(x)
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Changing the Linewidth
The default styles chosen by gnuplot are not ideal. Fortunately, we can change everything,
and make gnuplot’s output look any way we want. We’ll defer changing the styles of
labels, including tic labels, to a later chapter. But for now, let’s make the plot curves a bit
thicker. The set lw command set the linewidth; the parameter is the multiple of the
default width for the terminal in use.

set xrange [-pi : pi]

plot sin(x) lw 3


set xrange [-pi : pi]
plot sin(x) lw 3
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Positioning the Key
Notice how the automatically generated legend, or what gnuplot calls the “key”, also
displays the same styling details we give to the curves. And, speaking of the key, now
that we’ve reverted to using the entire plot height, notice how the curve collides with it.
Gnuplot positions some things automatically, but the key is not one of them. Gnuplot
provides several ways to position the key. Here’s the simplest:

set xrange [-pi : pi]

set key bottom right

plot sin(x) lw 3


set xrange [-pi : pi]
set key bottom right
plot sin(x) lw 3
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You can probably guess what you get with various combinations of bottom, left, right,
and top. If you need finer control over positioning, you can refer to one of gnuplot’s
coordinate systems (as in all the code examples, the new commands are highlighted):

set xrange [-pi : pi]

set key at graph 0.3, 0.6

plot sin(x) lw 3


set xrange [-pi : pi]
set key at graph 0.3, 0.6
plot sin(x) lw 3
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The phrase at graph 0.3, 0.6 positions the key at location x = 0.3 and y = 0.6 in graph
coordinates, which is a coordinate system where (0,0) is at the bottom left of the actual
graph (not the screen on which the graph is drawn). Say help coordinate to invoke
gnuplot’s help system and get a rundown of the five coordinate systems available to you.

Defining a Graph Title
In a later chapter we’ll find out how to style the text used in the key and elsewhere. For
now, here is how to add a title to the graph:

set xrange [-pi : pi]

set key at graph 0.3, 0.6

set title "Sine Wave"

plot sin(x) lw 3


set xrange [-pi : pi]
set key at graph 0.3, 0.6
set title "Sine Wave"
plot sin(x) lw 3
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Titling Individual Curves
You can use Unicode characters in your titles, and anywhere you specify text. We often
want to supply individual curves with titles as well:

set xrange [-pi : pi]

set key at graph 0.3, 0.6

set title "Sine Wave"

plot sin(x) lw 3 title "Sine of x"


set xrange [-pi : pi]
set key at graph 0.3, 0.6
set title "Sine Wave"
plot sin(x) lw 3 title "Sine of x"
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Grid Lines
To apply a grid to your graph, use the new command given below. The gridlines will, by
default, extend the major axes tics; in a later chapter we’ll learn how to get total control
over our tics.

set xrange [-pi : pi]

set key at graph 0.3, 0.6

set title "Sine Wave"

set grid

plot sin(x) lw 3 title "Sine of x"


set xrange [-pi : pi]
set key at graph 0.3, 0.6
set title "Sine Wave"
set grid
plot sin(x) lw 3 title "Sine of x"
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The gridlines can be styled just as the plotted curves can. In fact, depending on your
terminal, the gridlines may be so faint as to be almost impossible to see until you apply
some styling to make them more visible. To make it easier to style lines and curves, it’s
time to introduce the concept of the “linetype” in gnuplot. Each terminal has a set of
predefined linetypes (abbreviated lt). To see what they are, and to test some of the other
capabilities of the terminal you’re using, just enter this command:

test


test
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Linetypes
Let’s say that you want solid gridlines. Referring to the test plot we just made, you can
see that the solid line is linetype 1 (it may be something different on your terminal). Here
is how we get a grid with solid, green gridlines:

set xrange [-pi : pi]

set key at graph 0.3, 0.6

set title "Sine Wave"

set grid lt 1 lc rgb "green"

plot sin(x) lw 3 title "Sine of x"


set xrange [-pi : pi]
set key at graph 0.3, 0.6
set title "Sine Wave"
set grid lt 1 lc rgb "green"
plot sin(x) lw 3 title "Sine of x"
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Plotting Multiple Curves
To see the list of color names that gnuplot accepts, just type show colors at the prompt.
To plot more than one curve on a graph, just separate the functions (or data files, which
we’ll see later in this chapter) by commas, and gnuplot will plot them in a sequence of
colors, putting them on the key so you can identify them.

set xrange [-pi : pi]

set key at graph 0.3, 0.7

set title "Trigonometric Functions"

set grid lt 1 lc rgb "green"

plot sin(x) lw 3 title "Sine of x", cos(x) lw 3\

title "Cosine of x"@


set xrange [-pi : pi]
set key at graph 0.3, 0.7
set title "Trigonometric Functions"
set grid lt 1 lc rgb "green"
plot sin(x) lw 3 title "Sine of x", cos(x) lw 3\
   title "Cosine of x"
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Monochrome
When preparing a paper for publication, youmay have to create black andwhite renditions
of your graphs for the print version. The script here shows the command you need; as
you can see, gnuplot substitutes a sequence of dash styles in place of a sequence of colors.

set monochrome

set xrange [-pi : pi]

set key at graph 0.3, 0.7

set title "Trigonometric Functions"

set grid

plot sin(x) lw 3 title "Sine of x", cos(x) lw 3\

title "Cosine of x"


set monochrome
set xrange [-pi : pi]
set key at graph 0.3, 0.7
set title "Trigonometric Functions"
set grid 
plot sin(x) lw 3 title "Sine of x", cos(x) lw 3\
   title "Cosine of x"
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Creating and Plotting Data Files
Of course, gnuplot can plot data from files (and other sources, too, as we’ll see in sub-
sequent chapters) as well as mathematical functions. In order to experiment with this,
we’ll need at least one data file. You could make it by hand with a text editor or write
a program in your favorite language to generate some data, or use some that you have
available. But gnuplot can make data files itself. To make a file with data that forms a
parabola, execute the following script. We’ve included comments (they begin with the “#”
character; everything after this character is ignored by gnuplot) to explain what the new
commands do.

set table "parabola.dat" # Save numbers to a file.

plot -x**2

unset table # Go back to normal plotting.

plot sin(x) lw 3 title "Sine of x", \

"parabola.dat" title "Parabola data"


set table "parabola.dat" # Save numbers to a file.
plot -x**2
unset table # Go back to normal plotting.
plot sin(x) lw 3 title "Sine of x", \
   "parabola.dat" title "Parabola data"
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After executing the previous script you should have a file called “parabola.dat” in the
directory in which you started gnuplot. Keep it around so we can use it with later
examples. It will serve, also, as a convenient reference for the format that gnuplot expects
when plotting data files. In the last line, after our familiar sine curve, we’ve plotted the
numbers read from the file given inside quotation marks. This final line also shows how
we can break long lines in scripts into two by using a backslash. Gnuplot has chosen
markers, rather than a continuous line, to help indicate that we’re looking at data, but we
can change this.

Using a Second y-axis
First, however, notice how the sine curve is squashed, due to the larger range on the
y-axis required to include the data from the file. We can fix that by plotting each curve
against its own y-axis:

set y2tics -100, 20

set ytics nomirror

plot sin(x) axis x1y1 lw 3 title "Sine of x" , \

"parabola.dat" axis x1y2 title "Parabola data"


set y2tics -100, 20
set ytics nomirror
plot sin(x) axis x1y1 lw 3 title "Sine of x" , \
   "parabola.dat" axis x1y2 title "Parabola data"
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Gnuplot can have two different y-axes and two different x-axes. In order to define a second
y-axis, use the y2tics command; the first parameter is the starting value at the bottom
of the graph, and the second is the interval between tics on the axis. The second line tells
gnuplot to use a different axis on the right-hand side, rather than simply mirroring the
left-hand y-axis. The final plot command is the same as the ones we’ve seen before, with
the addition of the “axis” commands; these tell gnuplot which set of axes to use for which
curve.

Notice how the previous graph doesn’t really have room for the key anywhere inside it.
One way to handle this is to put the key outside:

set key bottom left outside

plot sin(x) axis x1y1 lw 3 title "Sine of x" , \

"parabola.dat" axis x1y2 title "Parabola data"


set key bottom left outside
plot sin(x) axis x1y1 lw 3 title "Sine of x" , \
    "parabola.dat" axis x1y2 title "Parabola data"
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Multiplot
There is another way to get multiple plots on one graph, one that is ultimately more
flexible. We’ll explore the full capabilities of multiplot in a later chapter. For now,
here is a simple example of how to use it to put two curves on a single graph, with each
curve using its own settings. If you enter the commands one at a time at the terminal,
notice how the prompt changes from >gnuplot to >multiplot after the set multiplot

command is entered. To clear the graph and start over, you can enter another multiplot
command.

set multiplot

set xrange [-2*pi : 2*pi]

plot sin(x) lt 2 lw 4

set x2range [-6*pi : 6*pi]

plot sin(x) lt 3 lw 4 axis x2y1


set multiplot
set xrange [-2*pi : 2*pi]
plot sin(x) lt 2 lw 4
set x2range [-6*pi : 6*pi]
plot sin(x) lt 3 lw 4 axis x2y1
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Sampling Frequency
Gnuplot plots functions by dividing the x-axis into a number of points and evaluating
the function at each point. These evaluation locations are called “samples.” By default,
gnuplot will use 100 samples. Sometimes this is not enough, and sometimes it is too many
for our presentational strategy, as we’ll see shortly. You can change the number of samples
used with the set samples command. This will set the total number of (equally-spaced)
sampled used for all the plot commands until you change it with another set samples

command; but we can plot curves using different numbers of samples on the same graph
by using the multiplot mode that we learned about in the previous example. When we
reduce the number of samples, first our graph gets a little bumpy. When we reduce it
too much, we see the effects of aliasing, and other symptoms of undersampling. Here is
an example showing the same sine wave plotted twice. The two curves have different
constants added to them to shift them vertically so we can see them both clearly on a
single graph. Nothing else is changed except for the sampling frequency.

set multiplot

set nokey

set yrange [-2 : 2]

set samples 800

plot sin(10*x)+1 lw 3 lt 1

set samples 100

plot sin(10*x)-1 lw 3 lt 2


set multiplot
set nokey
set yrange [-2 : 2]
set samples 800
plot sin(10*x)+1 lw 3 lt 1
set samples 100
plot sin(10*x)-1 lw 3 lt 2

http://redwood.berkeley.edu/bruno/npb261/aliasing.pdf
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The “with” Command
The three main styles for plotting functions or data are called lines, points (used for
the parabola data in the previous two examples) and both together, called linespoints.
The style can be chosen on the fly using the with command, as in the following example:

set key top left

set xrange [0 : 1]

plot x with lines, x**2 with points, x**3 with linespoints


set key top left
set xrange [0 : 1]
plot x with lines, x**2 with points, x**3 with linespoints
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Above we saw that the linetype can be selected from among those displayed using the
test command. As you can see, the output of that command also displays examples
of markers next to each sample line. You can have open or closed circles, diamonds,
triangles, etc., but referring the pointtype (abbreviated pt). And just as you can set the
line width with lw, you can set the point size with ps. This example, like all the others
in this chapter, shows how to set styles on the fly, individually for each curve. In a later
chapter we’ll see how to define reusable styles and set styling defaults, to save typing and
make our scripts easier to read. Gnuplot places a marker at each sample point. We’ve
reduced the sampling frequency to make room for the larger markers.

set samples 20

set key top left

set xrange [0 : 1]

plot x with lines lw 3, x**2 with points pt 6 ps 2,\

x**3 with linespoints lw 3 pt 15 ps 3


set samples 20
set key top left
set xrange [0 : 1]
plot x with lines lw 3, x**2 with points pt 6 ps 2,\
   x**3 with linespoints lw 3 pt 15 ps 3
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Dashed Lines
You might have noticed, as well, that the output of the test command displays some
dash patterns. You can set these as well, by specifying the dashtype, which can be
abbreviated dt.

set key top left

set xrange [0 : 1]

plot x lw 3 dt 5, x**2 lw 4 dt 3,\

x**3 lw 3 dt 2


set key top left
set xrange [0 : 1]
plot x lw 3 dt 5, x**2 lw 4 dt 3,\
   x**3  lw 3 dt 2
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In order to use the dashtype setting in the previous example, you need to remember
which type number is associated with which dash pattern, or refer to the output of the
test command. There is a simpler and more pleasant way, however, which was recently
added to gnuplot. You can specify the dash pattern visually, as in this example:

set key top left

set xrange [0 : 1]

plot x lw 3 dt "._", x**2 lw 4 dt "- -",\

x**3 lw 3 dt "- . _"


set key top left
set xrange [0 : 1]
plot x lw 3 dt "._", x**2 lw 4 dt "- -",\
   x**3  lw 3 dt "- . _"
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The “set link” Command
Earlier in this chapter we learned how to set up a second y-axis so that two curves could
be plotted together even though they covered very different ranges. The y2 axis can have
its own range (set via set y2range) and its own tic spacing. Gnuplot also allows the
two y-axes, or the two x-axes, to be related by any mathematical transformation. You
do this by using the set link command, which requires you to spell out the inverse
transformation as well:

set key bottom right

set xrange [0 : 10]

set link y2 via y**2 inverse sqrt(y)

set ytics nomirror

set y2tics 0, 5

plot x lw 15, x**2 lw 4 axis x1y2


set key bottom right
set xrange [0 : 10]
set link y2 via y**2 inverse sqrt(y)
set ytics nomirror
set y2tics 0, 5
plot x lw 15, x**2 lw 4 axis x1y2
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The previous example was designed to make it clear what the axis scaling does. As you
can see from the ticmarks on the y2 axis, the scale on that axis is not linear, but is defined
by the transformation in the set link command. We’ve plotted a straight line (the
function “x”) on the y1 axis, using a very thick width, and the function 𝑥2 on the y2 axis,
using a thinner line. The scaling of the y2 axis undoes the function, turning it into a
straight line, which overlays the “real” straight line.

If we turn on the grid, using the set grid command that we learned about above, the
grid will align with the y1 axis tics (and the x-axis tics). If we want it to align with the
scaled, y2 axis, here’s what we do:

set key bottom right

set xrange [0 : 10]

set link y2 via y**2 inverse sqrt(y)

set ytics nomirror

set y2tics 0, 5

set grid lw 2 lt 1 lc rgb "gray"

set grid noy y2

plot x lw 15, x**2 lw 4 axis x1y2


set key bottom right
set xrange [0 : 10]
set link y2 via y**2 inverse sqrt(y)
set ytics nomirror
set y2tics 0, 5
set grid lw 2 lt 1 lc rgb "gray"
set grid noy y2
plot x lw 15, x**2 lw 4 axis x1y2
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In the previous script, y2 is acually an abbreviation for y2tics, etc. We had to specify
noy (short for noytics) to turn off the grid for the first y-axis. Having them both on
would lead to a confusing mess. You can also have a grid that extends the ticmarks of just
one axis, by explicitly turning off the other one:

set key bottom right

set xrange [0 : 10]

set link y2 via y**2 inverse sqrt(y)

set ytics nomirror

set y2tics 0, 5

set grid lw 2 lt 1 lc rgb "gray"

set grid y2

set grid nox noy y2

plot x lw 15, x**2 lw 4 axis x1y2


set key bottom right
set xrange [0 : 10]
set link y2 via y**2 inverse sqrt(y)
set ytics nomirror
set y2tics 0, 5
set grid lw 2 lt 1 lc rgb "gray"
set grid  y2
set grid nox noy y2
plot x lw 15, x**2 lw 4 axis x1y2
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One very useful application of grid linking is showing different units on the same graph.
Light can be talked about in terms of wavelength or of photon energy; the two are related
by 𝐸 = ℎ𝑐/𝜆, where 𝐸 is the energy, ℎ is Planck’s constant, and 𝜆 is the wavelength. In
the linking formula in the script below, we’ve used a multiplier that let’s us express 𝜆 in
microns and 𝐸 in eV (electron volts). The highlighted line is the form of the set xtics

command that sets in interval between the tics, letting gnuplot choose the start and end
values automatically.

set title\

"Transmission vs. Energy (eV, top) and λ (μm, bottom)"

set xrange [5 : 10]

set xtics nomirror

set link x2 via 1.24/x inverse 1.24/x

set x2tics .02

set grid

plot exp(x) lw 4


set title\
 "Transmission vs. Energy (eV, top) and λ (μm, bottom)"
set xrange [5 : 10]
set xtics nomirror
set link x2 via 1.24/x inverse 1.24/x
set x2tics .02
set grid
plot exp(x) lw 4
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Parametric Plots
Up to now we’ve seen plots of functions and data where there was an explicit relationship
between the x and y values. A more general class of 2D curves is where the x and y
values each depend on a third variable, called a parameter. In gnuplot, the parameter is
called “t”. It has a default range, just as x does: [-5 : 5], and can be reset with the set
trange command. The following plot resembles a Lissajous figure, which can be seen on
an oscilloscope when sine waves of different frequencies are plugged into the x and y
axes.

set samples 1000

set parametric

unset key

plot sin(7*t), cos(11*t)


set samples 1000
set parametric
unset key
plot sin(7*t), cos(11*t)
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Up to now the tic marks and labels have been placed around the outside of the plot, at
what gnuplot calls the “border”. This is not where the actual axes are. Unless you turn
them on, the axes are not drawn.

set samples 1000

set parametric

unset key

set zeroaxis

plot sin(7*t), cos(11*t)


set samples 1000
set parametric
unset key
set zeroaxis
plot sin(7*t), cos(11*t)



Lee Phillips: Gnuplot 5 2nd ed. 2D Plots 35

You can choose to show only one of the axes. Let’s try that while also showing how to
set the thickness of the axis line. Linetypes and colors can be set as well.

set samples 1000

set parametric

unset key

set yzeroaxis lw 4

plot sin(7*t), cos(11*t)


set samples 1000
set parametric
unset key
set yzeroaxis lw 4
plot sin(7*t), cos(11*t)
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In the previous examples the ticmarks and their numerical labels stayed on the border.
We can move the x-tics, y-tics, or both to the axes.

set samples 1000

set parametric

unset key

set zeroaxis lw 3

set xtics axis

plot sin(7*t), cos(11*t)


set samples 1000
set parametric
unset key
set zeroaxis lw 3
set xtics axis 
plot sin(7*t), cos(11*t)
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Here we move all the tics to the axes and dispense with the border entirely:

set samples 1000

set parametric

unset key

set zeroaxis lw 3

unset border

set xtics axis

set ytics axis

plot sin(7*t), cos(11*t)


set samples 1000
set parametric
unset key
set zeroaxis lw 3
unset border
set xtics axis 
set ytics axis 
plot sin(7*t), cos(11*t)
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Controlling Your Borders
You can have a partial border: on the top, left, or any combination. Specify where by
adding these numbers for the segments that you want, and using the result as a parameter
in the set border command:

1 bottom

2 left

4 top

8 right

So to get (horizontal) borders on the top and bottom only, the magic number is 5. Here’s
how to use this to get borders on the bottom and left:

set samples 1000

set parametric

unset key

set zeroaxis lw 3

set border 3 lw 2

set xtics axis

set ytics axis

plot sin(7*t), cos(11*t)


set samples 1000
set parametric
unset key
set zeroaxis lw 3
set border 3 lw 2
set xtics axis 
set ytics axis
plot sin(7*t), cos(11*t)
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Front and Back
Borders and grids can be drawn in front of or behind the data. Unless you reset it, the grid
is drawn behind the curves and the border in front. We’ll illustrate the effect of changing
the default with some thick gridlines. To review the meanings of the abbreviations in
the second to last line of the script below: lw 12 means 12 times the terminal’s default
linewidth; lt 1 means linetype 1, usually a solid line; and lc is short for linecolor, where
we’ve chosen one of the convenient color names. Along with the “front” keyword, there
is a “back” keyword that does what you would expect.

set samples 1000

set parametric

unset key

unset border

set grid lw 12 lt 1 lc rgb "light-gray" front

plot sin(7*t), cos(11*t)


set samples 1000
set parametric
unset key
unset border
set grid lw 12 lt 1 lc rgb "light-gray" front
plot sin(7*t), cos(11*t)
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Polar Coordinates
All the plots in this chapter up to now have used rectangular coordinates, which gnuplot
calls, following the usual convention, x and y. For certain types of situations, however,
polar geometry is the natural coordinate system. In polar coordinates we have a radius, r,
measured from the origin (which is usually at the center of the graph) and an angle, θ,
usually measured counter-clockwise from the horizontal. On the gnuplot command line,
the angular coordinate is called “t”, and has a default range of 0 to 2π; for this plot we
want to cover a larger range of angles, so we set the trange accordingly. This example
also demonstrates gnuplot’s default treatment of the axes in a polar plot, adding a radius
axis to the usual borders.

set samples 500

set polar

set trange [0 : 12*pi]

plot t lw 2


set samples 500
set polar
set trange [0 : 12*pi]
plot t lw 2
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The previous graph depicts the function r = t, which we got just by telling gnuplot to plot
t. This is sometimes called Archimedes’ spiral. It is analogous to plotting a straight line
in rectangular coordinates, or the function y = x, by telling gnuplot to plot x. Using
polar coordinates, we can easily generate some complicated looking plots, such as the
spirograph-type curve shown here. In this example we’ve turned off all the tics and axes,
including those associated with the radius coordinate, leaving just a decorative curve.

set samples 2000

unset key

unset border

unset xtics

unset ytics

unset rtics

unset raxis

set polar

set trange [0 : 12*pi]

plot cos(0.67*t) lw 2


set samples 2000
unset key
unset border
unset xtics
unset ytics
unset rtics
unset raxis
set polar
set trange [0 : 12*pi]
plot cos(0.67*t) lw 2
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Filled Curves
Gnuplot can fill portions of the curves you plot with colors or patterns. There are a
handful of options for filling curves; we’ll give an example of each one. Here is the default
if you just use the with filledcurves command with no options. It treats the curve as
if it were closed and fills up the resulting area:

set key top left

plot sin(x) with filledcurves


set key top left
plot sin(x) with filledcurves



Lee Phillips: Gnuplot 5 2nd ed. 2D Plots 43

In the previous example the program just closed the curve by drawing an imaginary
line from the final point plotted to the first point. This default behavior is perhaps more
useful in certain polar plots, like the one we show here. Note the order in which the plot
commands are issued; this is the order in which gnuplot will draw the curves and paint
the fills. It should be clear that when we say plot 3 in polar coordinates that we are
asking for a circle with radius = 3; because the set of points for which the radius is a fixed
value is the definition of a circle. When you try this example, you may find that, instead
of circles, gnuplot is drawing what look like ellipses. This is because it is setting up the
plots on your terminal to cover a non-square rectangular area. This usually looks better
than a square plot, but if you want your circles to look like circles, add the command set

size ratio 1 before the plot command (you can also say set size square). We’ll
have more to say about sizing and positioning plots in a later chapter.

set polar

plot 3 with filledcurves, 2 with filledcurves,\

1 with filledcurves


set polar
plot 3 with filledcurves, 2 with filledcurves,\
   1 with filledcurves
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In the previous example, we let gnuplot create the fills with its default sequence of solid
colors. These can be altered using the with fillcolor command, or its abbreviation,
with fc, just as linecolors can be set with the with lc command. A later chapter will be
devoted entirely to color in gnuplot; there we’ll learn how to do such things as overlaying
fills with different colors and opacities. But we have another option. If you look at the
output of the test command again, you will notice a collection of “pattern fill”s. These
depend on the terminal in use. Here is how to use them to fill areas with patterns rather
than solid colors. This is particularly useful when preparing plots for publication when
color is not an option. In the code below, fs is an abbreviation for fillstyle.

set polar

plot 3 with filledcurves fs pattern 2,\

2 with filledcurves fs pattern 4,\

1 with filledcurves fs pattern 7


set polar
plot 3 with filledcurves fs pattern 2,\
   2 with filledcurves fs pattern 4,\
   1 with filledcurves fs pattern 7
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In the previous example of pattern fills, gnuplot used the patterns we specified, but also
applied a sequence of colors. If you want a strictly monochrome rendering, you can
combine patterns with the command for that:

set polar

set monochrome

plot 3 with filledcurves fs pattern 2,\

2 with filledcurves fs pattern 4,\

1 with filledcurves fs pattern 7


set polar
set monochrome
plot 3 with filledcurves fs pattern 2,\
     2 with filledcurves fs pattern 4,\
     1 with filledcurves fs pattern 7
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Now let’s return to rectangular coordinates to illustrate the other filledcurves options.
Sometimes you want to fill in the part of a curve that lies above or below a particular
value. Here is an example showing how to do both on one graph, using a Bessel function
(to get a list of the other special functions built-in to gnuplot, issue the command help

expressions functions). After doing the filledcurves plots, we need to plot the curve
itself, as the filledcurves plots just plot the fills:

unset key

set grid

set xrange [0 : 50]

plot besy0(x) with filledcurves above y = 0.08,\

besy0(x) with filledcurves below y = -0.08,\

besy0(x) lw 2


unset key
set grid
set xrange [0 : 50]
plot besy0(x) with filledcurves above y = 0.08,\
     besy0(x) with filledcurves below y = -0.08,\
     besy0(x) lw 2
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Another option is to fill the area between the curve and a vertical or horizontal line:

set key top left

set xrange [-1 : 1]

set grid lw 2

plot x**3 with filledcurves x=-0.5,\

-x**2 with filledcurves y=-0.5


set key top left
set xrange [-1 : 1]
set grid lw 2
plot x**3 with filledcurves x=-0.5,\
    -x**2 with filledcurves y=-0.5
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You can also fill the curve between a point, given in x,y plot coordinates, and the end
points of the curve:

plot -x**2 with filledcurves xy = 0, -20


plot -x**2 with filledcurves xy = 0, -20
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The final filledcurves option is to fill in the area between two curves. This is a bit more
complicated, as it requires a data file, rather than functions specified on the command
line. The data file must have rows of the form x y1 y2; the area between the curves y1
and y2 will be filled. You can make your own data file or use the file called “intersection”
that we’ve made available with this book. That file contains the coordinates of a straight
line with a negative slope and a downward-opening parabola. If you start up gnuplot in
the same directory where you have stored the file “intersection” you just need the one
line in the script below to make a plot showing the area between the two curves. In later
chapters we’ll learn how to make other types of plots from the same file, and a trick to
make this plot with no data file at all.

plot "intersection" with filledcurves


plot "intersection" with filledcurves
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Range-frame Graphs
We’ll round out this chapter with a few examples illustrating some variations on range
handling in gnuplot. Up to now we’ve relied on the set xrange and related commands
for setting the maximum and minimum values on the various axes. Gnuplot can also
produce what are sometimes called “range-frame” graphs, where an axis and its tics are
limited to the data actually plotted, even if the graph as a whole may cover a larger range.
An example should make this clearer:

set samples 1000

set ytics nomirror rangelimited

set ytics 1

set y2tics 0.2

set y2range [-1:1]

set yrange [0:20]

plot 5*sin(2*x)+ 10 lw 2, sin(x/2) axis x1y2


set samples 1000
set ytics nomirror rangelimited
set ytics 1
set y2tics 0.2
set y2range [-1:1]
set yrange [0:20]
plot  5*sin(2*x)+ 10 lw 2, sin(x/2) axis x1y2
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Local Ranges
The set yrange and related commands set the ranges globally, applying to all subsequent
plot commands. Gnuplot also allows a flexible shorthand for setting the range of every
coordinate for each plot command, that supersedes the global settings. The notation
sets the ranges within square brackets, with the variables listed in a particular order. In
rectangular coordinates, the order is x, y, x2, y2. Here’s how it works:

unset key

set grid lw 2

plot [-5 : 5] [-10 : 30] x**2 lw 4


unset key
set grid lw 2
plot [-5 : 5] [-10 : 30] x**2 lw 4
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In the last example we used the bracket range notation to set the xrange to go from -5 to
5 and the yrange to cover -10 to 30. The range notation can also be used with parametric
plots; in this case the order is t (the parameter), x, y, x2, y2. Let’s plot our first parametric
example again, but this time limiting the trange. Since we only give one range command
below, it applies to t, with x and y left to the defaults:

set samples 1000

set parametric

unset key

plot [0 : pi] sin(7*t), cos(11*t) lw 3


set samples 1000
set parametric
unset key
plot [0 : pi] sin(7*t), cos(11*t) lw 3
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To skip one coordinate in the list of range commands, use an empty bracket. Also, to use
the default limit on one side of the range, you can leave it blank. For example, [5 : ]

would mean that the coordinate in question should start at 5 and end at its normal default
value. In the example below we illustrate both of these shorthands. In this parametric
plot, we set the parameter t to go from its default, which is -5, to -π; the x-coordinate will
take its default values ; and the y-coordinate will range from -1 to -4:

set samples 1000

set parametric

unset key

plot [ : -pi] [] [-1 : -.4] sin(7*t), cos(11*t) lw 3


set samples 1000
set parametric
unset key
plot [ : -pi] [] [-1 : -.4] sin(7*t), cos(11*t) lw 3
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The local range commands, as we are calling them, also allow you to redefine the symbol
used for the dummy, or independent variable. (In rectangular coordinates, this variable is
x; in both polar and parametric plots, it is called t.) This can be set globally with the set
dummy command, but can also be set locally, as we show in the current example. We’ll
replot the Archimedes spiral that we used to introduce polar coordinates, but this time
using a smaller angular range, and we’ll redefine the angle coordinate to be “a”:

set polar

set samples 500

plot [a = 0 : 3*pi] a lw 3


set polar
set samples 500
plot [a = 0 : 3*pi]  a lw 3



Chapter 2

Errors and Finance

55
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This chapter will show you how to plot values with errors or ranges. The examples in this chapter all use a data file rather
than mathematical functions. You should download the file, called “statdata,” which should be available in the sample place
where you downloaded this book. Alternatively, you may of course use your own data, if you have some that you’d like
to work with. This might be more interesting for you; however, the examples here assume that the data columns are in a
particular order. We’ll be clear about what that order is, so you can either rearrange the format of your files or make small
alterations to the example scripts.

Most of the graphs in this chapter will appear to be similar to the basic 2D graphs of the previous chapter, with some extra
marks added to the data points. These marks convey additional numbers associated with each value of the independent
variable (usually, the x-axis). There can be as many as four additional numbers associated with each point. This would, in
a sense, be a six-dimensional graph. In most of our examples, these additional numbers represent the estimated error in a
measurement, or a possible range of values; this plot style is commonly seen in scientific publications. We include financial
plots in this chapter as well, because they use similar concepts to display a range of values, and sometimes use the same
graphical conventions.

The Data File

We’ll use the same file of data for all the examples in this chapter. This file, called “statdata,” contains 10 lines. The data
represent the function 𝑦 = 𝑥, with “random” errors added to both the 𝑥 and 𝑦 values. Errors in the positive and negative
direction are included separately. Each line of the file therefore contains six numbers, representing the following values:
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𝑥 𝑦 𝑥− 𝑥+ 𝑦− 𝑦+

Here 𝑦+ means the value of 𝑦 plus the estimated error in the positive direction, 𝑦− means the value of 𝑦with the estimated
error in the negative direction subtracted, etc. (so the positive error itself would be 𝑦+ − 𝑦, for example). The “errors” are
all generated randomly; they are not simply departures from the “theoretical” 𝑦 = 𝑥 line. It is more usual in experimental
scenarios to have a simple Δy and/or Δx, representing the estimated total error in the measurements, but sometimes we have
separate error estimates on the positive and negative side; and since gnuplot can handle these, we include the general case
in our data file.
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Column Selection
Many of the examples in this chapter use only a few of the six columns of data in the
statdata file. Also, we will sometimes need to perform some simple arithmetic on the
data before handing it off to gnuplot for plotting. All of this can be done simply and easily
with the gnuplot using keyword. This can be abbreviated to u. The using command is
very important, so we’ll introduce it with several examples. The first example shows how
to select columns from a data file. We use the u abbreviation for using; the phrase u 1:3

tells gnuplot to use the first and third columns, etc. So this script makes three normal,
2D plots, plotting the second, third, and fourth column against the first. The default plot
style when plotting from a data file is “points”, rather than “lines,” which is the default
when plotting functions. The script uses the pointtypes (pt) 9 and 8 to select triangles for
column 9 and 8: this is meant to suggest a range of 𝑦 values. The script shows one way
to plot a set of values and their ranges using the normal plotting commands that we’ve
already learned; many other approaches are possible, limited only by your creativity.

We’ve illustrated a useful shorthand notation in the script. The empty string ("") means
the previously mentioned data file: in this case, we are telling gnuplot to plot from
statdata three times (it starts from the beginning of the file for each plot).

unset key

plot "statdata" u 1:2 ps 2 pt 7,\

"" u 1:3 ps 2 pt 9 lc 8,\

"" u 1:4 ps 2 lc 8 pt 11


unset key
plot "statdata" u 1:2 ps 2 pt 7,\
   "" u 1:3 ps 2 pt 9 lc 8,\
   "" u 1:4 ps 2 lc 8 pt 11
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Offsets
You might have noticed that the graph in the previous example was a bit crowded. This
is because gnuplot set the axis ranges to fit the range of the data, which puts the plot
symbols up against the border box. If you want some breathing room, you could manually
set the xrange and/or the yrange to be something larger, but gnuplot has another, slightly
more convenient way to do this. As shown below, the set offset command expands
the axis ranges in the order left, right, bottom, top. If you use this, you usually want to use
it with the set auto fix command, as shown. This prevents gnuplot from extending
the range to include the next tic mark when the data values fall between tics.

unset key

set auto fix

set offsets 2,2,2,2

plot "statdata" u 1:2 ps 2 pt 7,\

"" u 1:3 ps 2 pt 9 lc 8,\

"" u 1:4 ps 2 lc 8 pt 11


unset key
set auto fix
set offsets 2,2,2,2
plot "statdata" u 1:2 ps 2 pt 7,\
   "" u 1:3 ps 2 pt 9 lc 8,\
   "" u 1:4 ps 2 lc 8 pt 11
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Calculating with Columns
This next example shows how you can calculate with the using keyword. Suppose we
wanted to plot the numerical range of values of each data point, rather than the data
limits, as we did in the previous example. The range is 𝑦+−𝑦−, which, because of the way
our file is organized (see the introduction to this chapter), amounts to column 3 - column
4. Arithmetic is performed with the using keyword, inside round brackets. Within an
arithmetic expression, columns must be prefixed by a dollar sign, to distinguish them
from simple numbers. In the example, the first column for the plot is the first column in
the file; the second column for the plot is the result of the expression after the colon.

set auto fix

set offsets 2,2,2,2

plot "statdata" u 1:($3 - $4) ps 2 pt 7\

title "Measurement uncertainty"


set auto fix
set offsets 2,2,2,2
plot "statdata" u 1:($3 - $4) ps 2 pt 7\
   title "Measurement uncertainty"
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Errorbars
The gnuplot style xyerrorbars plots data ranges in the x and y directions assuming that
the data file is organized the way we’ve set up statdata. This style plots line segments
covering the range of data and centered on the data values. The ends of the line segments
are marked with little perpendicular lines.

unset key

set auto fix

set offsets 2,2,2,2

plot "statdata" with xyerrorbars


unset key
set auto fix
set offsets 2,2,2,2
plot "statdata"  with xyerrorbars
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As you can see, the errorbars are drawn quite thin. You will usually want to adjust
this style. This is done with the set errorbars command, which takes an additional
pure numeric argument in addition to the usual arguments for setting thickness, color,
and linetype. This extra argument sets the length of the end caps, in arbitrary units;
experiment to get the effect that you want. There is either a bug or an odd feature in this
setting: the linewidth specification has no effect unless the linetype is also set. In our
example we’ve overridden the color associated with lt 1 with a color specification.

unset key

set auto fix

set offsets 2,2,2,2

set errorbars lw 3 lt 1 lc rgbcolor("orchid4") 2

plot "statdata" with xyerrorbars


unset key
set auto fix
set offsets 2,2,2,2
set errorbars lw 3 lt 1 lc rgbcolor("orchid4") 2
plot "statdata"  with xyerrorbars
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It’s more usual to plot the data values conspicuously, with their errors overlaid. This can
be accomplished by adding a second plot to the error plots above. Remember that an
empty string means to reuse the same date file; if no columns are specified with a using
command then the first two are used to make a normal 2D plot.

unset key

set auto fix

set offsets 2,2,2,2

set errorbars lw 3 lt 1 lc rgbcolor("orchid4") 2

plot "statdata" with xyerrorbars, "" ps 3 pt 7


unset key
set auto fix
set offsets 2,2,2,2
set errorbars lw 3 lt 1 lc rgbcolor("orchid4") 2
plot "statdata"  with xyerrorbars, "" ps 3 pt 7
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For each of the errorbar styles we cover in this chapter, gnuplot has a related errorlines
style. We won’t give an example of each one, because that would quickly get redundant.
But here is one example, to show how it works: with xyerrorlines does the same thing
as with xyerrorbars, but connects the dots with a line.

unset key

set auto fix

set offsets 2,2,2,2

set errorbars lw 3 lt 1 lc rgbcolor("orchid4") 2

plot "statdata" with xyerrorlines, "" ps 3 pt 7


unset key
set auto fix
set offsets 2,2,2,2
set errorbars lw 3 lt 1 lc rgbcolor("orchid4") 2
plot "statdata" with xyerrorlines, "" ps 3 pt 7
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Often we need to plot data with error bars in the 𝑦 direction, while assuming that the 𝑥
values are exact. The gnuplot style for this is with yerrorbars. When plotting with this
style you can supply the data in one of two formats: either 𝑥 𝑦 Δ𝑦 or 𝑥 𝑦 𝑦− 𝑦+.
Our data file is in neither format, so we’ll employ the using directive again:

unset key

set auto fix

set offsets 2,2,2,2

set errorbars lw 3 lt 1 lc rgbcolor("orchid4") 2

plot "statdata" u 1:2:5:6 with yerrorbars ps 3 pt 7


unset key
set auto fix
set offsets 2,2,2,2
set errorbars lw 3 lt 1 lc rgbcolor("orchid4") 2
plot "statdata" u 1:2:5:6 with yerrorbars ps 3 pt 7
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There is also an xerrorbars style, which does what you might expect. Here the data
columns must be in the order 𝑥 𝑦 Δ𝑥 or 𝑥 𝑦 𝑥− 𝑥+.

unset key

set auto fix

set offsets 2,2,2,2

set errorbars lw 3 lt 1 lc rgbcolor("orchid4") 2

plot "statdata" u 1:2:3:4 with xerrorbars ps 3 pt 7


unset key
set auto fix
set offsets 2,2,2,2
set errorbars lw 3 lt 1 lc rgbcolor("orchid4") 2
plot "statdata" u 1:2:3:4 with xerrorbars ps 3 pt 7
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“var”
The properties of the lines or points that make up your graph (the ones that you set using
the set ps, etc. commands) can be controlled by the data itself, using gnuplot’s var
command. This opens up a tremendous array of possibilities. Since this chapter is about
visualizing errors, or ranges of values, here is a script that plots the data with circles of
varying sizes, where the size of each circle shows the y-error of its corresponding data
point. The y-error is calculated by subtracting 𝑦− from 𝑦+; the multiplier 6 was arrived at
through trial and error (the argument to with pointsize is simply a multiplier applied
to the default size for the terminal in use). The result of this arithmetic is supplied as a
virtual third column, which is picked up by the var command, highlighted below:

unset key

set auto fix

set offsets 2,2,2,2

plot "statdata" u 1:2:(6*($6-$5)) pt 6 lw 5 ps var


unset key
set auto fix
set offsets 2,2,2,2
plot "statdata" u 1:2:(6*($6-$5)) pt 6 lw 5 ps var
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Since the data in the file statdata was generated by applying some random noise to the
line 𝑦 = 𝑥, let’s complete the previous example by treating the line as if it were a “theory”
and the data points as of they were “measurements.”

set auto fix

set offsets 2,2,2,2

set grid

set key top left

plot "statdata" u 1:2:(6*($6-$5)) pt 6 lw 5 ps var\

title "measurement", x lw 3 dt "-" title "theory"


set auto fix
set offsets 2,2,2,2
set grid
set key top left
plot "statdata" u 1:2:(6*($6-$5)) pt 6 lw 5 ps var\
   title "measurement", x lw 3 dt "-" title "theory"
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Whisker Plots
Another convention for visualizing data ranges is a “whisker plot”, also known in the
statistics world as a “box and whisker plot” a boxplot, or a candlestick plot. In gnuplot
this type of plot is created by saying with candle. The statistical whisker plot is a series
of symbols, each one showing the mean value of a set of measurements, the width of
the central part of the measurements’ or population’s distribution, and the extent of
the remainder of the distribution excluding the “outliers” (the outliers themselves are
sometimes shown as dots, but we won’t use that style here). See a statistics textbook
for definitions and use of these concepts. This type of plot is also sometimes used for
financial price data rather than the finance plot that we’ll show later in this chapter. We
will avoid the specialized jargon of statistics and further discussion of the uses of these
plots, but the statisticians among our readers know why they’re here.

Our file statdata is not ideal for illustrating whisker plots, so we’ve included another data
file called candles. The column order used by gnuplot’s candlestick style is x box_min

whisker_min whisker_high box_high; rarely is a data file in this format, and our
file candles is no exception, so we’ll turn to the u command to repurpose the data
columns. The candles file contains the columns x whisker_min box_min data_mean

box_high whisker_high. Note, for example, that the mean values are not even included
in the candlestick plot; if desired, they must be overlayed with a second plot command.
Below is a basic example of the candlestick style. The boxwidth controls the width of the
candlesticks.

unset key

set auto fix

set offsets 1,1,1,1

set boxwidth .5

plot "candles" u 1:3:2:6:5 with candle lw 2


unset key
set auto fix
set offsets 1,1,1,1
set boxwidth .5
plot "candles" u 1:3:2:6:5 with candle lw 2
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It’s common in statistical plots to put little end-caps on the whiskers. Here is the previous
script with the command to do that added; the numerical argument is the width of the
Whiskers as a fraction of the width of the box:

unset key

set auto fix

set offsets 1,1,1,1

set boxwidth .5

plot "candles" u 1:3:2:6:5 with candle lw 2 whisker 0.5


unset key
set auto fix
set offsets 1,1,1,1
set boxwidth .5
plot "candles" u 1:3:2:6:5 with candle lw 2 whisker 0.5



Lee Phillips: Gnuplot 5 2nd ed. Errors and Finance 71

As we mentioned above, the candlesticks don’t include the actual data means. Here we
add them with a second plot command.

unset key

set auto fix

set offsets 1,1,1,1

set boxwidth .5

plot "candles" u 1:3:2:6:5 with candle lw 2 whisker 0.5,\

"" u 1:4 pt 7 ps 4


unset key
set auto fix
set offsets 1,1,1,1
set boxwidth .5
plot "candles" u 1:3:2:6:5 with candle lw 2 whisker 0.5,\
   "" u 1:4 pt 7 ps 4
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The default style for candlesticks is to draw an empty box. When this style us used
for market price data, the columns are interpreted as date open low high close,
and if the closing price is lower than the opening price, the candlestick box is filled in.
However, if a solid or patterned fill style is set for the boxes, this will be used for all the
candlesticks in all cases. Here is our candlestick plot with solid filled boxes:

unset key

set auto fix

set offsets 1,1,1,1

set boxwidth .5

plot "candles" u 1:3:2:6:5 with candle lw 2 whisker 0.5\

fs solid fc rgbcolor("goldenrod"),\

"" u 1:4 pt 7 ps 3


unset key
set auto fix
set offsets 1,1,1,1
set boxwidth .5
plot "candles" u 1:3:2:6:5 with candle lw 2 whisker 0.5\
   fs solid fc rgbcolor("goldenrod"),\
   "" u 1:4 pt 7 ps 3
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You can also fill the candlesticks with a pattern, which is especially useful for monochrome
publication:

set monochrome

unset key

set auto fix

set offsets 1,1,1,1

set boxwidth .5

plot "candles" u 1:3:2:6:5 with candle lw 2 whisker 0.5\

fs pattern 5, "" u 1:4 pt 7 ps 3


set monochrome
unset key
set auto fix
set offsets 1,1,1,1
set boxwidth .5
plot "candles" u 1:3:2:6:5 with candle lw 2 whisker 0.5\
   fs pattern 5, "" u 1:4 pt 7 ps 3
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Financebars
The same information as in our first and second candlestick plots (without the mean
data values) can be plotted using gnuplot’s with financebars style. This is another,
more common, convention for plotting market price fluctuations. This style does not
distinguish between price increases or decreases. It shows the high and low prices by
the extent of a vertical line, and the opening and closing prices with small horizontal tics
attached to the line. The width of these tics (the default is almost invisible) is set with the
set bars command.

Note that it would be more usual for the values on the horizontal axis to be dates or
date/times, but we’ll defer plotting with times until we’ve had a chance to introduce that
topic.

unset key

set auto fix

set offsets 2,2,2,2

set bars 2

plot "candles" u 1:3:2:6:5 with financebars lw 3


unset key
set auto fix
set offsets 2,2,2,2
set bars 2
plot "candles" u 1:3:2:6:5 with financebars lw 3



Chapter 3

Histograms and Bar Charts
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The title of this chapter refers to two different things that are sometimes confused.

A bar chart is a type of 2D plot uses the heights of a series of vertical (or, sometimes, horizontal) bars, drawn with gaps
between them, to indicate the quantities of a small or moderate number of different things, so they can be compared visually.
Although it is a type of 2D plot, we discuss it in this chapter rather than in Chapter 1, because it is a special case, and because
of the similarity between bar charts and histograms. You are about to see many examples of bar charts, which should make
the description above clear; they are also ubiquitous in journalism and advertising.

A histogram is a little different. This visualization shows how a continuous variable is distributed among different ranges
of values. The bars in a histogram are plotted abutting each other. When used to visualize a distribution, their width, as well
as their height, is significant: each bar’s area is proportional to the number of data points that it represents.

For most of the examples in this chapter we use a datafile called “energySources”. This is a table of a handful of countries
and the percentage of energy production for each country from several sources. The data is real, and comes from the CIA
World Factbook. If you take a look at this datafile, you can see how comments can be added, using the “#” symbol, and
how textual labels can be included with the data. You should have downloaded the file from the same place where you
downloaded this text.

https://www.mathsisfun.com/data/histograms.html
https://www.cia.gov/library/publications/the-world-factbook/rankorder/rankorderguide.html
https://www.cia.gov/library/publications/the-world-factbook/rankorder/rankorderguide.html
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steps and fsteps

Our first example in this chapter is not actually about histograms, nor about bar charts,
but rather about gnuplot’s step styles; we’re including it here because of some similarity
to histogram plots, especially the histeps plot in the next example.

The first line in the script shows another way to set a style option, in this case for the
linewidth. Setting a termoption will set a default lw, so we won’t need to append the
phrase to each plot command.

We plot the parabola.dat file, a table of a simple parabola; you can download it from
the usual place. The new plot styles are highlighted, and the graph shows the difference
between the steps and fsteps styles; the normal linespoints plot is included for
reference. As you can see, both styles plot the data with horizontal and vertical line
segments; the difference is whether you go down first and then to the right, or right first
and then down.

set termoption lw 3

set xr [0 : 1]

plot "parabola.dat" with fsteps title "fsteps",\

"" with linespoints ps 3 title "Parabolic curve",\

"" with steps title "steps"


set termoption lw 3
set xr [0 : 1]
plot "parabola.dat" with fsteps title "fsteps",\
   "" with linespoints ps 3 title "Parabolic curve",\
   "" with steps title "steps"
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histeps

Here is a third step style: histeps also uses horizontal and vertical line segments, but
centered on the datapoints, as shown in the graph. The name is intended to refer to
histograms, which are similarly centered on the data.

set termoption lw 3

set xr [0 : 1]

plot "parabola.dat" with histeps title "histeps",\

"" with linespoints ps 3 title "Parabolic curve"


set termoption lw 3
set xr [0 : 1]
plot "parabola.dat" with histeps title "histeps",\
   "" with linespoints ps 3 title "Parabolic curve"
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Histograms
Here we’ll plot a section of our parabolic data as a histogram. The first line in the script
tells gnuplot that further commands to plot from a data file should use the histogram
style. The second line causes the bars to be filled with a solid color, and to be drawn with
a solid black border (the linetype -1 on most terminals). The third line ensures that the
bars are drawn with no gap between them, resulting in a proper histogram plot.

set style data histogram

set style fill solid border -1

set style histogram gap 0

set xr [60 : 90]

unset key

plot "parabola.dat" u (-$2)


set style data histogram
set style fill solid border -1
set style histogram gap 0
set xr [60 : 90]
unset key
plot "parabola.dat"  u (-$2)
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Bar Charts
We now turn to simple bar charts. In this and the next handful of examples, we use the
provided “energySources” file. We’ll often be extracting a subset of the data in this file for
plotting, as we do in this first example. Gnuplot uses the “histogram” style for bar charts
as well as true histograms. The third line uses commands that we’ve already seen; the
final phrase setting the linecolor sets the color of the fill. You can see that gnuplot puts
the number of the row on the x-axis; we’ll see later how to make this more informative.
The default gap between bars (or clusters of bars; see the next example) is the width of
two bars.

set style data histogram

set style fill solid border -1

plot "energySources" u 3 title "Hydro" lc "red"


set style data histogram
set style fill solid border -1
plot "energySources" u 3 title "Hydro" lc "red"
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The previous example extracted the third column from the file. If you want to plot more
than one category at a time, simply select more columns. Gnuplot will create groups of
bars for you, grouping by row in the datafile. Here we plot all the columns. As you can
see from the previous example, gnuplot sometimes does a poor job of deciding on the
xrange, so we’ll correct that here.

set style data histogram

set style fill solid border -1

set xr [0 : 10]

plot "energySources" u 2 title "Fossil",\

"" u 3 title "Hydro",\

"" u 4 title "Nuclear",\

"" u 5 title "Other renewables"


set style data histogram
set style fill solid border -1
set xr [0 : 10]
plot "energySources" u 2 title "Fossil",\
   "" u 3 title "Hydro",\
   "" u 4 title "Nuclear",\
   "" u 5 title "Other renewables"
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You can adjust the spacing between the groups of bars (called “clusters” in gnuplot
terminology) with another command, shown below. The default style is a gap of 2, which
leaves a space equal to the width of two bars. As you increase the gap between clusters,
the bars are made thinner if necessary to fit everything on the plot.

set style data histogram

set style fill solid border -1

set style histogram cluster gap 4

set xr [0 : 10]

plot "energySources" u 2 title "Fossil",\

"" u 3 title "Hydro",\

"" u 4 title "Nuclear",\

"" u 5 title "Other renewables"


set style data histogram
set style fill solid border -1
set style histogram cluster gap 4
set xr [0 : 10]
plot "energySources" u 2 title "Fossil",\
   "" u 3 title "Hydro",\
   "" u 4 title "Nuclear",\
   "" u 5 title "Other renewables"
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xticlabels

So far the labels on the x-axis in our bar charts have not been very informative. The row
numbers don’t tell us anything without a legend. Fortunately, the country names that
go with the rows are included in the datafile, and gnuplot has a way to use them: the
xticlabels command, abbreviated xtic. This function can take an integer argument,
which tells it which column to pluck the labels from. Since this is a column selection, it’s
included as part of the using command. The country names are in column 1, so we do
this:

set style data histogram

set style fill solid border -1

set xr [0 : 10]

plot "energySources" u 2 title "Fossil",\

"" u 3 title "Hydro",\

"" u 4 title "Nuclear",\

"" u 5:xtic(1) title "Other renewables"


set style data histogram
set style fill solid border -1
set xr [0 : 10]
plot "energySources" u 2 title "Fossil",\
   "" u 3 title "Hydro",\
   "" u 4 title "Nuclear",\
   "" u 5:xtic(1) title "Other renewables"
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You probably noticed that the labels on the x-axis in the previous example were too close
together, and even overlapped slightly. Gnuplot will not reduce the font size or take any
other measures to fix this: it’s up to you. You could make everything fit by using a smaller
font size, but this is not ideal. In a later chapter we’ll learn all about how to deal with
labels and text on plots, but, since this is such a common problem with bar charts, we’ll
permit ourselves a preview here. Observe the highlighted command in the script below,
and the effect it has on the labels:

set style data histogram

set style fill solid border -1

set xr [0 : 10]

set xtic rotate by -45

plot "energySources" u 2 title "Fossil",\

"" u 3 title "Hydro",\

"" u 4 title "Nuclear",\

"" u 5:xtic(1) title "Other renewables"


set style data histogram
set style fill solid border -1
set xr [0 : 10]
set xtic rotate by -45
plot "energySources" u 2 title "Fossil",\
   "" u 3 title "Hydro",\
   "" u 4 title "Nuclear",\
   "" u 5:xtic(1) title "Other renewables"
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The every Command
The using command is used for selecting columns, as we’ve seen by now many times.
If you want to limit the plot to only certain rows, instead of plotting every row in the
datafile, use the every command. The syntax is every ::a::b, where a is the row where
you wish to begin, and b is the ending row. The row numbering starts at 0. In our case,
row zero contains the energy source labels, so we start at 1. The colons can be replaced
by numbers for selecting data blocks and for skipping rows. For all the details in one
place, type help every at the gnuplot prompt.

set key top right

set style data histogram

set style fill solid border -1

set xr[-0.5 : 4]

plot "energySources" u 3 every ::1::3 title "Hydro",\

"" u 4 every ::1::3 title "Nuclear",\

"" u 5:xtic(1) every ::1::3 title "Other renewables"


set key top right
set style data histogram
set style fill solid border -1
set xr[-0.5 : 4]
plot "energySources" u 3 every ::1::3 title "Hydro",\
"" u 4 every ::1::3 title "Nuclear",\
"" u 5:xtic(1) every ::1::3 title "Other renewables"
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Up above we learned about xticlabels. The integer argument to this function (say, n) is
treated as an abbreviation of stringcolumn(n), where stringcolumn is a function that
reads the column specified in its argument as a series of strings (rather than numbers). In
fact, xticlabels takes a string argument. We can use gnuplot’s string concatenation
operator, which is the period (full-stop), ., to build up a more elaborate label:

set style data histogram

set style fill solid border -1

set xtic rotate by -45

set xr[-1 : 4]

plot "energySources" u 3 every ::1::3 title "Hydro",\

"" u 4:xtic("country: " . stringcolumn(1))\

every ::1::3 title "Nuclear"


set style data histogram
set style fill solid border -1
set xtic rotate by -45
set xr[-1 : 4]
plot "energySources" u 3 every ::1::3 title "Hydro",\
   "" u 4:xtic("country: " . stringcolumn(1))\
   every ::1::3 title "Nuclear"
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Automatic Titles
Since our datafile contains titles, it would be nice if gnuplot could read those and use them,
so that we would not be required to append a title command to each plot command.
Gnuplot can do this, in two ways. To read the titles automatically for each plot command,
use the new command highlighted in the script below, where col is an abbreviation for
columnheader. If, instead, you want to read the titles from the datafile, but only for some
of the data, you can append a title col to the individual plot commands for which you
want the title picked up.

set style data histogram

set style fill solid border -1

set key autotitle col

set xr [-1 : 10]

set xtic rotate by -45

plot "energySources" u 2,\

"" u 3,\

"" u 4 ,\

"" u 5:xtic(1)


set style data histogram
set style fill solid border -1
set key autotitle col
set xr [-1 : 10]
set xtic rotate by -45
plot "energySources" u 2,\
   "" u 3,\
   "" u 4 ,\
   "" u 5:xtic(1)
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The newhistogram Command: Grouping Clusters
Sometimes, grouping the bars in a bar chart into clusters is just not complicated enough.
When you feel the need to group your clusters themselves into bigger groups, that’s when
you reach for the newhistogram command. The newhistogram keyword is followed by
a title for the grouping, and, usually, a linetype or linecolor specification to reset the
color sequence. You must turn off titles for all bars after the first group, to avoid repeating
the titles in the legend, if you are using one. An example should show you what it’s all
about:

set style data histogram

set style fill solid border -1

set key autotitle col

set xr [-1 : 9.5]

set xtic rotate by -45

plot newhistogram "Some Countries" lt 1,\

"energySources" u 2:xtic(1) every ::1::3 ,\

"" u 3 every ::1::3,\

"" u 4 every ::1::3,\

newhistogram "Other Countries" lt 1,\

"" u 2:xtic(1) every ::4::8 notitle,\

"" u 3 every ::4::8 notitle,\

"" u 4 every ::4::8 notitle


set style data histogram
set style fill solid border -1
set key autotitle col
set xr [-1 : 9.5]
set xtic rotate by -45
plot newhistogram "Some Countries" lt 1,\
   "energySources" u 2:xtic(1) every ::1::3 ,\
   "" u 3 every ::1::3,\
   "" u 4 every ::1::3,\
   newhistogram "Other Countries" lt 1,\
   "" u 2:xtic(1) every ::4::8 notitle,\
   "" u 3 every ::4::8 notitle,\
   "" u 4 every ::4::8 notitle




Lee Phillips: Gnuplot 5 2nd ed. Histograms and Bars 89

Stacked Bar Charts
There is another way to display the type of data that we’ve been dealing with, that
sometimes makes it easier to compare quantities. Instead of placing clusters of bars
next to each other, each bar can be made of a stack of smaller bars. This results in a
compact representation of the data that’s easier for the eye to take in quickly. A simple
example should make it clear how to achieve this familiar type of bar chart. The example
script uses one additional new command, to reduce the boxwidth in order to allow a gap
between the bars; for zero gap, such as when you are making a real histogram, you can
set the boxwidth to 1.

set style data histogram

set style fill solid

set style histogram rowstacked

set boxwidth 0.6

set key autotitle col

set xr [-1 : 11]

set xtic rotate by -45

plot "energySources" u 2, "" u 3:xtic(1),\

"" u 4, "" u 5


set style data histogram
set style fill solid 
set style histogram rowstacked
set boxwidth 0.6
set key autotitle col
set xr [-1 : 11]
set xtic rotate by -45
plot "energySources" u 2, "" u 3:xtic(1),\
   "" u 4, "" u 5
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Gnuplot can stack the data the other way around, without having to alter the datafile. In
other words, you can choose to make a stack of countries, and plot them against energy
source on the x-axis: a transpose of the rows and columns in the datafile. To accomplish
this, merely change the rowstacked keyword to columnstacked, and take care to select
titles from the appropriate places. The titling is accomplished with two commands used
here for the first time. The key(1) command tells gnuplot to take the title displayed in
the key from column 1. The title col command, which we mentioned above, takes the
column title, used on the x-axis, from the column header read from the datafile.

set style data histogram

set style fill solid

set style histogram columnstacked

set boxwidth 0.6

set xr [-1 : 4]

set xtic rotate by -45

plot "energySources" u 2:key(1) title col,\

"" u 3 title col,\

"" u 4 title col,\

"" u 5 title col


set style data histogram
set style fill solid 
set style histogram columnstacked
set boxwidth 0.6
set xr [-1 : 4]
set xtic rotate by -45
plot "energySources" u 2:key(1) title col,\
   "" u 3 title col,\
   "" u 4 title col,\
   "" u 5 title col
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3D Box Plots

New in the latest version of gnuplot is the ability to create 3D box plots. In some of the previous box plots in this chapter,
we have visualized what is essentially a function of two variables: the percentage of utilization as a function of country
and fuel source. Since the usual bar chart or histogram displays a scalar function of a single variable, in order to show the
dependence on both variables we resorted to plotting groups of bars and to various kinds of stacking, along with the use of
color.

Plotting in 3Dmakes this simpler in some ways, as we can display each independent variable on its own axis. However, all
3D plotting brings with it extra complications in the form of handling perspective, the occlusion of graph elements, and the
positioning of labels. As you will see, using the 3D box plot style involves some commands that are explained later, in the
chapter on plotting surfaces. For these reasons, this final section should perhaps be postponed to the 3D plotting chapter;
but including it with the other bar chart examples seems to be more natural. In fact, you can think of a 3D bar chart as a
discrete form of surface plot, just as a normal bar chart is a kind of discrete line plot.

In the example, we’ll continue with our same data, and plot utilization percentage as a function of both country and energy
source.
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The first new, highlighted command extends the idea of the boxwidth to boxdepth; the
effect is the same, to create gaps between the boxes. The second highlighted command
makes the boxes transparent, which greatly improves the legibility of these kinds of
plots. The splot command means “surface plot”; we’ll learn all about that later. The for
... commands that follow splot are a form of looping, that we’ll also learn about in a
subsequent chapter. Recent versions of gnuplot repurpose the splot command for 3D
boxes and for voxel plots. Below, in the using clause, we use the col loop variable in
several places. The fields, in order, mean x:y:bar height:color:xtic labels:ytic labels.
In order to get the country names to fit without overlapping, we’ve slightly decreased
their font size in the first line, and also truncated them to three characters using the
substr command (highlighted).

set xtics font ",11"

set boxwidth 0.6

set boxdepth 0.6

set xr [0.5 : 9.5]

set yr [1.5 : 5.5]

set cbr [1:5]

set xyplane 0

set style fill transparent solid .5

set view 50, 190

unset key

unset colorbox

splot for [col = 1 : 5] "energySources"\

u 0:(col):(column(col)):(col):xtic(substr(stringcolumn(1), 1, 3)):\

ytic(columnhead(col)) with boxes lc pal


set xtics font ",11"
set boxwidth 0.6
set boxdepth 0.6
set xr [0.5 : 9.5]
set yr [1.5 : 5.5]
set cbr [1:5]
set xyplane 0
set style fill transparent solid .5
set view 50, 190
unset key
unset colorbox
splot for [col = 1 : 5] "energySources"\
  u 0:(col):(column(col)):(col):xtic(substr(stringcolumn(1), 1, 3)):\
  ytic(columnhead(col)) with boxes lc pal 
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This chapter is all about putting labels and other text on your plots. We couldn’t avoid discussing some of this in previous
chapters, because most plots need some time of textual information, but here we’ll get into all the details. By the end of this
chapter you will be able to exercise complete control of the text on your graphs.

One thing we should get out of the way up front is the issue of special characters. In the past, one had to use a special
notation to insert Greek letters and other exotic (from the point of view of an English speaker) characters and symbols into
gnuplot output. Now, gnuplot is now Unicode aware. Simply include the Unicode symbols in your gnuplot commands, and
they will appear in the output, as long as the font supports them. It is up to you to know how to type Unicode with your
system. On Linux, you can use the compose key, or whatever shortcuts your editor supports. On Apple and Windows
machines, there are several methods available. Also, you can always cut and paste from a web browser or other application
where the text is displayed.

If you are using gnuplot in concert with LaTeX, you can use that typesetting system to insert labels and text for you. This
is a specialized topic that deserves its own chapter, and we’ll have a whole chapter devoted to LaTeX later in the book.

https://discussions.apple.com/thread/1899290?tstart=0
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Labeling the Axes
In most of our examples up to now the axes have been marked with tics, and these tics
have had labels: either numbers or, as in many of the examples in the previous chapter,
text taken from a data file. Usually we want to include some additional information on
the axes, to describe what is being plotted along each dimension. This is was axis labels
are for. You can attach labels to the horizontal and vertical axes (and others, for plot
types that we’ll cover in later chapters).

set termopt lw 3

set key at graph .7, .9

set xlabel "Time (sec.)"

set ylabel "Sine Function"

set y2label "Cosine Function"

set xr [0 : 2*pi]

plot sin(x), cos(x)


set termopt lw 3
set key at graph .7, .9
set xlabel "Time (sec.)"
set ylabel "Sine Function"
set y2label "Cosine Function"
set xr [0 : 2*pi]
plot sin(x), cos(x)



Lee Phillips: Gnuplot 5 2nd ed. Text and Labels 96

You can make multiline labels by inserting a code for newline characters. You might have
to add the line set encoding utf8 near the beginning of this script, depending on the
terminal you are using, if the Greek letter comes out wrong.

set termopt lw 3

set key at graph .7, .9

set xlabel "Time\n(μ seconds)"

set ylabel "Sine\nFunction"

set y2label "Cosine\nFunction"

set xr [0 : 2*pi]

plot sin(x), cos(x)


set termopt lw 3
set key at graph .7, .9
set xlabel "Time\\n(μ seconds)"
set ylabel "Sine\\nFunction"
set y2label "Cosine\\nFunction"
set xr [0 : 2*pi]
plot sin(x), cos(x)
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The labels can be offset from their default positions by adding this keyword to the
set command. The default coordinate system is in characters, where every unit roughly
corresponds to the width of a character. Here we shift the xlabel by 15 character widths
to the left, and half a character width upwards.

set termopt lw 3

set key at graph .7, .9

set xlabel "Time (μseconds)" offset -15, 0.5

set ylabel "Sine\nFunction"

set y2label "Cosine\nFunction"

set xr [0 : 2*pi]

plot sin(x), cos(x)


set termopt lw 3
set key at graph .7, .9
set xlabel "Time (μseconds)" offset -15, 0.5
set ylabel "Sine\\nFunction"
set y2label "Cosine\\nFunction"
set xr [0 : 2*pi]
plot sin(x), cos(x)
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The font and color of each label can be separately specified (tc is the abbreviation for
textcolor). In this example we’ve set the vertical axis labels and the corresponding
curves to the same color, to show which axis goes with which curve. We’ve completed
the plot by adding a title, in a larger font size. Note that gnuplot does not supply its own
fonts, so you need to choose a font that is displayed on your system; if you don’t have
the font used in the title in this script, gnuplot will substitute something else.

set termopt lw 3

set key at graph .7, .9

set title "Circular Functions" font "LibertinusSerifDisplay, 22"

set xlabel "Time (μseconds)" offset -15, 0.5\

font "Helvetica, 16" tc "blue"

set ylabel "Sine\nFunction" font ",16" tc "red"

set y2label "Cosine\nFunction" font ",16" tc "orange"

set xr [0 : 2*pi]

plot sin(x) lc rgb "red", cos(x) lc rgb "orange"


set termopt lw 3
set key at graph .7, .9
set title "Circular Functions" font "LibertinusSerifDisplay, 22"
set xlabel "Time (μseconds)" offset -15, 0.5\
     font "Helvetica, 16" tc "blue"
set ylabel "Sine\\nFunction" font ",16" tc "red"
set y2label "Cosine\\nFunction" font ",16" tc "orange"
set xr [0 : 2*pi]
plot sin(x) lc rgb "red", cos(x) lc rgb "orange"
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More Fun with the Key
Previously, we’ve learned how to position the key, the legend that gnuplot generates
automatically, both inside and outside the graph. The key can be customized in other
ways, as well. Here it is with a box around it:

set key top left box

set xrange [0 : 1]

plot x lw 3 dt 5, x**2 lw 4 dt 3,\

x**3 lw 3 dt 2


set key top left box
set xrange [0 : 1]
plot x lw 3 dt 5, x**2 lw 4 dt 3,\
   x**3  lw 3 dt 2
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The key in the previous example looked a bit crowded inside its box. We can add to the
width and height of the box by adding some keywords to the command:

set key top left box width 1 height 1

set xrange [0 : 1]

plot x lw 3 dt 5, x**2 lw 4 dt 3,\

x**3 lw 3 dt 2


set key top left box width 1 height 1
set xrange [0 : 1]
plot x lw 3 dt 5, x**2 lw 4 dt 3,\
   x**3  lw 3 dt 2
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If we prefer a horizontal legend, that can be done as well:

set key top left box width 1 height 1 horizontal

set xrange [0 : 1]

plot x lw 3 dt 5, x**2 lw 4 dt 3,\

x**3 lw 3 dt 2


set key top left box width 1 height 1 horizontal
set xrange [0 : 1]
plot x lw 3 dt 5, x**2 lw 4 dt 3,\
   x**3  lw 3 dt 2
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Gnuplot is very customizable. The style of the lines that make up the box can be controlled,
as well as the font used in the titles:

set key top left box lw 3 lc "violet" width 1 height 1\

font "Helvetica, 20"

set xrange [0 : 1]

plot x lw 3 dt 5, x**2 lw 4 dt 3,\

x**3 lw 3 dt 2


set key top left box lw 3 lc "violet" width 1 height 1\
   font "Helvetica, 20"
set xrange [0 : 1]
plot x lw 3 dt 5, x**2 lw 4 dt 3,\
   x**3  lw 3 dt 2
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One problem with the key in all the previous examples was that the default length of
line used was not long enough to make clear which dash pattern was intended. This can
be adjusted, as well (the default units for most of these key specifications are character
widths):

set key top left box width 1 height 2 samplen 20

set xrange [0 : 1]

plot x lw 3 dt 5, x**2 lw 4 dt 3,\

x**3 lw 3 dt 2


set key top left box width 1 height 2 samplen 20
set xrange [0 : 1]
plot x lw 3 dt 5, x**2 lw 4 dt 3,\
   x**3  lw 3 dt 2
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If you prefer the names to come after the curve samples, use the keyword reverse; this
goes well with the Left keyword, which justifies the text to the left:

set key top left box width 1 height 1 samplen 20\

Left reverse

set xrange [0 : 1]

plot x lw 3 dt 5, x**2 lw 4 dt 3,\

x**3 lw 3 dt 2


set key top left box width 1 height 1 samplen 20\
  Left reverse 
set xrange [0 : 1]
plot x lw 3 dt 5, x**2 lw 4 dt 3,\
   x**3  lw 3 dt 2
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The key can have its own title — but it’s best not to use a box in that case, because the
titles and boxes sometimes collide.

set key width 1 height 1 samplen 20\

title "Powers of x" font "Helvetica, 20"

set xrange [0 : 1]

plot x lw 3 dt 5, x**2 lw 4 dt 3,\

x**3 lw 3 dt 2


set key width 1 height 1 samplen 20\
  title "Powers of x" font "Helvetica, 20"
set xrange [0 : 1]
plot x lw 3 dt 5, x**2 lw 4 dt 3,\
   x**3  lw 3 dt 2
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In the previous example, we removed the positioning command for the key, which put it
back at the top right. Things are a bit of a mess, with the curves colliding with the legend.
If there is no convenient location for the key, another option is to draw it on top of the
curves, using the opaque keyword:

set key width 1 height 1 samplen 20\

title "Powers of x" font "Helvetica, 20" opaque

set xrange [0 : 1]

plot x lw 3 dt 5, x**2 lw 4 dt 3,\

x**3 lw 3 dt 2


set key width 1 height 1 samplen 20\
  title "Powers of x" font "Helvetica, 20" opaque
set xrange [0 : 1]
plot x lw 3 dt 5, x**2 lw 4 dt 3,\
   x**3  lw 3 dt 2
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If you plot a large number of curves, the key will continue to grow vertically, perhaps
becoming taller than you would like. Gnuplot has a way to handle this: the maxrow

keyword. This limits the height of the key, forcing it to be laid out with more columns.
In our example we also show another positioning keyword: bmargin puts the key in the
bottom margin. There are corresponding commands called lmargin, etc.

set key width 1 height 1 title "Powers of x"\

font "Helvetica, 20" maxrow 3 bmargin

set xrange [0 : 1]

plot x, x**2, x**3, x**4, x**5, x**6, x**7, x**.5, x**.2


set key width 1 height 1 title "Powers of x"\
   font "Helvetica, 20" maxrow 3 bmargin
set xrange [0 : 1]
plot x, x**2, x**3, x**4, x**5, x**6, x**7, x**.5, x**.2
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Finally, you can adjust the space between lines in the key by using the spacing keyword,
as well as center it overall just by appending the keyword center (there is also left and
right, which is the default.

set key width 1 height 1 title "Powers of x"\

font "Helvetica, 20" maxrow 3 bmargin center\

spacing 2

set xrange [0 : 1]

plot x, x**2, x**3, x**4, x**5, x**6, x**7, x**.5, x**.2


set key width 1 height 1 title "Powers of x"\
   font "Helvetica, 20" maxrow 3 bmargin center\
   spacing 2
set xrange [0 : 1]
plot x, x**2, x**3, x**4, x**5, x**6, x**7, x**.5, x**.2
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Labels Anywhere
You can place labels at any location on the plot. By default, the coordinates that you specify
for the labels refer to the primary x and y axes, which makes it convenient to position
labels in relation to the plotted curves or data points. An extra positioning command can
be added, to offset the label by the given number of character widths. This is usually
desired, to avoid having the labels lie right on top of the curves in applications such as
the one below. You can style the labels, and even draw a box around them, just as we did
with our key in the previous examples; since the syntax is largely the same, we won’t
repeat ourselves.

It is usually impossible to get the positioning of the labels perfect on the first try. One
usually needs to repeatedly replot while adjusting the positioning coordinates until
everything looks right. The label tags are handy for this: they are the integers after the
set label part of the command. A subsequent set label 2 command will just change
label 2, leaving the others intact.

unset key

set xr [0 : 1]

set label 1 "x" at .4, .4 offset 1,0

set label 2 "x^{1/3}" at .2, .2**(1./3) offset 0,2

set label 3 "x^3" at .8, .8**3 offset 1,0

plot x, x**3, x**(1./3)


unset key
set xr [0 : 1]
set label 1 "x" at .4, .4 offset 1,0
set label 2 "x^{1/3}" at .2, .2**(1./3) offset 0,2
set label 3 "x^3" at .8, .8**3 offset 1,0
plot x, x**3, x**(1./3)
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Enhanced Text
You may have noticed that the “^” symbols in the label text in the previous example turned
into actual superscripts in the result. This is because gnuplot supports a system of markup,
special to gnuplot, called enhanced text. It is usually turned on by default; otherwise by
the terminal option enhanced, but only works in those terminals that support it. We
won’t go into enhanced text syntax in detail (type help enhanced for more information),
mainly because, if complex or extensive mathematical text is needed in your graphs, the
LaTeX options discussed in a later chapter give far better results. However, the enhanced
text mode can be useful as a simple way to place some mathematical text on your plot,
in situations where you are not too picky about the typographical quality of the result.
In this example we plot the error function from statistics, which is built-in to gnuplot
(type help express functions to get a list of the other built-in special functions), and
label it with its definition. This label demonstrates a few enhanced text features: font
size and variant selection delimited by curly brackets, and starting with {/; the use of
Unicode symbols directly (older guides to gnuplot rely on selecting characters from the
Symbol font using their codes, which is now obsolete); subscripts and superscripts; and
the @ symbol, which causes the following character (or delimited group) to behave as if it
had zero width — required here to get superscripts and subscripts to align properly. The
label is positioned in the default location, at 0,0.

unset key

set xr [-3 : 3]

set label "erf{/:Italic (x) = 2/π^{1/2}{/=24 ∫^@{/=9 x}_{/=9 0}} e^{-t^2} dt}" offset 1,0

plot erf(x)
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Coordinate Systems
We could not avoid referring to some of gnuplot’s coordinate systems in some previous
examples, because explaining certain features required that we position a label or plot
element. Here we’ll explain these concepts more completely.

Gnuplot provides five distinct coordinate systems. Whenever you need to position some-
thing, you can mix and match these at will, using coordinates that are most convenient
for you. We’ve already done this, when we positioned a label for a curve using the x
and y coordinates, but gave it a small offset using the character coordinate system.
This technique ensures that the label will be pushed off by one character width from the
labeled point, regardless of the xrange or yrange.

In this example we’ll construct a graph that demonstrates four of the coordinate systems
directly; the fifth one, the screen system, will make more sense for an example that will
appear in a later chapter. The x2r, y2r, x2tics, and y2tics setting are for a second set
of axes, defining the second coordinate system.

unset key; set grid lt -1

set xr [0 : 10]; set yr [0 : 10]

set x2r [0 : 100]; set y2r [0 : 100]

set xtics 1; set ytics 1

set x2tics 10; set y2tics 10

set label "First 2, 2" at 2,2

set label "Second 70, 80" at second 70, 80 tc "blue"

set label "Graph .5, .5" at graph .5, .5

set label "Character 20, 15" at character 20, 15

set label "12345678901234567890" at character 1, 16 tc "green"

plot 0, 0


unset key; set grid lt -1
set xr [0 : 10]; set yr [0 : 10]
set x2r [0 : 100]; set y2r [0 : 100]
set xtics 1; set ytics 1
set x2tics 10; set y2tics 10
set label "First 2, 2" at 2,2
set label "Second 70, 80" at second 70, 80 tc "blue"
set label "Graph .5, .5" at graph .5, .5
set label "Character 20, 15" at character 20, 15
set label "12345678901234567890" at character 1, 16 tc "green"
plot 0, 0
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Plotting Labels from Files
Up to now we’ve typed out the label text directly in the script. It’s also possible to
read the label from a data file. This is often convenient, because data files commonly
contain labels and text annotating the data. If you add the command with labels when
plotting from a data file, gnuplot will read the column listed third in your using command
to get the text of the labels to plot. Let’s revisit our “energySources” datafile, that we
used in the histogram chapter. If you don’t have it, you can download it from the usual
place. We’ll plot the country name on coordinates that map the percentage of fossil fuel
vs. hydropower production.

unset key

set xr [10 : 80]

set yr [-5 : 20]

set xlab "Fossil Fuel %"

set ylab "Hydropower %"

plot "energySources" u 2:3:1 with labels\

font "Helvetica, 20"


unset key
set xr [10 : 80]
set yr [-5 : 20]
set xlab "Fossil Fuel %"
set ylab "Hydropower %"
plot "energySources" u 2:3:1 with labels\
   font "Helvetica, 20"
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We can also set other properties of the text labels based on data in the file. In this example
we’ll repeat the previous graph, but color the labels according to the nuclear power
percentage. Gnuplot has the concept of a currently active color palette. This can be
selected or defined by the user, but we’ll get into that in a later chapter. The default, that
we’ll use in this example, is the typical heat-map palette. If you use the special syntax
palette z in the color specification, this will take the fourth column from the using
clause and use it to select a color from the palette. The range of values that map on to
the palette it set with the set cbrange command: here we set it to run from 0 to 100,
since we are dealing with percentages. The palette is displayed by default, and can have
its own label.

unset key

set xr [10 : 80]

set yr [-5 : 20]

set cbr [0 : 100]

set xlab "Fossil Fuel %"

set ylab "Hydropower %"

set cblab "Nuclear power %"

plot "energySources" u 2:3:1:4 with labels tc palette z\

font "Helvetica,20"


unset key
set xr [10 : 80]
set yr [-5 : 20]
set cbr [0 : 100]
set xlab "Fossil Fuel %"
set ylab "Hydropower %"
set cblab "Nuclear power %"
plot "energySources" u 2:3:1:4 with labels tc palette z\
   font "Helvetica,20"
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To make our graph more precise, we can plot points with the labels. There’s nothing
really new in this example, aside from illustrating the use of lc palette z to set the
“linecolor” of the points, but it’s worth illustrating the style. We’ve also adjusted the
font of the axis and colorbar labels; it’s not unlikely that you don’t have this particular
font on your system, in which case gnuplot will substitute something else; or you can
substitute the font of your choice.

unset key

set xr [10 : 80]

set yr [-5 : 20]

set cbr [0 : 100]

set xlab "Fossil Fuel %" font "DejaVu Serif, 18"

set ylab "Hydropower %" font "DejaVu Serif, 18"

set cblab "Nuclear power %" font "DejaVu Serif, 18"

plot "energySources" u 2:3:1:4 with labels tc palette z\

font "Helvetica,20",\

"" u 2:3:4 w points pt 7 ps 3 lc palette z


unset key
set xr [10 : 80]
set yr [-5 : 20]
set cbr [0 : 100]
set xlab "Fossil Fuel %" font "DejaVu Serif, 18"
set ylab "Hydropower %" font "DejaVu Serif, 18"
set cblab "Nuclear power %" font "DejaVu Serif, 18"
plot "energySources" u 2:3:1:4 with labels tc palette z\
   font "Helvetica,20",\
   "" u 2:3:4 w points pt 7 ps 3 lc palette z
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As you saw, there is a problem with the previous graph. The points are plotted on top
of the labels, making them hard to read, and not producing the effect we were after.
Fortunately, there are justification and offset commands for labels:

unset key

set xr [5 : 80]

set yr [-5 : 20]

set cbr [0 : 100]

set xlab "Fossil Fuel %" font "DejaVu Serif, 18"

set ylab "Hydropower %" font "DejaVu Serif, 18"

set cblab "Nuclear power %" font "DejaVu Serif, 18"

plot "energySources" u 2:3:1:4 with labels tc palette z\

font "Helvetica,20" right offset -1,0,\

"" u 2:3:4 w points pt 7 ps 3 lc palette z


unset key
set xr [5 : 80]
set yr [-5 : 20]
set cbr [0 : 100]
set xlab "Fossil Fuel %" font "DejaVu Serif, 18"
set ylab "Hydropower %" font "DejaVu Serif, 18"
set cblab "Nuclear power %" font "DejaVu Serif, 18"
plot "energySources" u 2:3:1:4 with labels tc palette z\
   font "Helvetica,20" right offset -1,0,\
   "" u 2:3:4 w points pt 7 ps 3 lc palette z
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In the previous graph we were obligated to expand the xrange a bit in order to accommo-
date the labels and points. Like tic labels, arbitrary labels can be rotated. Here is another
way to fit all the information on the graph, while keeping everything big:

unset key

set xr [10 : 80]

set yr [-5 : 20]

set cbr [0 : 100]

set xlab "Fossil Fuel %" font "DejaVu Serif, 18"

set ylab "Hydropower %" font "DejaVu Serif, 18"

set cblab "Nuclear power %" font "DejaVu Serif, 18"

plot "energySources" u 2:3:1:4 with labels tc palette z\

font "Helvetica,20" offset -1,-1 rotate by -25,\

"" u 2:3:4 w points pt 7 ps 3 lc palette z


unset key
set xr [10 : 80]
set yr [-5 : 20]
set cbr [0 : 100]
set xlab "Fossil Fuel %" font "DejaVu Serif, 18"
set ylab "Hydropower %" font "DejaVu Serif, 18"
set cblab "Nuclear power %" font "DejaVu Serif, 18"
plot "energySources" u 2:3:1:4 with labels tc palette z\
   font "Helvetica,20" offset -1,-1 rotate by -25,\
   "" u 2:3:4 w points pt 7 ps 3 lc palette z
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Hypertext Labels
Gnuplot provides another way to plot a set of points with associated labels. It can make
an interactive plot, were the labels are hidden until the user hovers the mouse pointer over
them to make them appear. This is particularly useful when you have a large collection
of points and don’t want a huge mass of possibly overlapping labels.

We can not display the full result here in this book, because there is no standard way for
PDF documents to include this type of interactivity. However, if you go to the download
area on the publisher’s website, you will find a section that refers to supplementary
material, which will have a link that you can follow to see the interactive graph, in the
form of an SVG image. Here we’ll reproduce the appearance of the graph, without its
mouse interaction.

The script saves the plot in an SVG file on disk, following the second line. The set term

command before that contains some keywords that are required to include the mouse
interaction. The script ends with a bare set out command, that ensures that all the
output is flushed to the file. You can use the file in various ways in your webpages; our
approach is to include it using the HTML object tag.

set term svg mouse standalone

set out "energy.svg"

unset key

set xr [10 : 80]; set yr [-5 : 20]; set cbr [0 : 100]

set xlab "Fossil Fuel %" font "DejaVu Serif, 18"

set ylab "Hydropower %" font "DejaVu Serif, 18"

set cblab "Nuclear power %" font "DejaVu Serif, 18"

plot "energySources" u 2:3:1:4 with labels hypertext\

point pt 7 ps 3 lc palette z

set out
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Horizontal Bar Charts
All of the bar charts in the previous chapter were of the vertical kind. That’s because
gnuplot does not include a horizontal bar chart style. But, armed with our new knowledge
of how to manipulate text, we can make one. The trick is to rotate the text on the graph
so that when the entire image is rotated for display or publication, everything is readable.
The example includes the rotation of tic labels, something that we also visited in the
chapter on histograms.

set style data histogram

set style fill solid border -1

unset key; unset xlab

set bmargin 3

set label "Energy Usage of Several Countries"\

font "Helvetica, 16"\

rotate by 90 offset 0,2 tc "steelblue"

set ylab "Nuclear Power %"\

font "DejaVu Serif, 18" offset 1,0

set xlab "Fossil Fuel %" font "DejaVu Serif, 18"

set ytics rotate by 90

set xtics rotate by 45 offset 1,.2 right

plot "energySources" u 4:xtic(1)
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The small programs, or scripts, that we have seen in all the examples up to now have been simply lists of commands that
gnuplot executes one at a time, ending, if all goes well, with the graph that you want. You have been talking to gnuplot using
its internal scripting language. But this language can do more: in fact, it contains many of the features of a real programming
language. In this chapter we’ll learn how to use these programming features to automate some graphing tasks, including
the creation of a sequence of images that can be turned into an animation.

When an example script creates an animation, we’ll display the first frame of the animation, in the place where we
normally display the example graph, overlayed with an icon resembling a movie camera. The movie file is embedded in the
book’s PDF file as an attachment; not all PDF readers know how to deal with attachments, but most fairly recent ones do.
In most PDF document readers, you merely need to click on the picture to open the movie in your default video application;
in some, including many PDF readers built-in to web browsers, you need to double-click. The situation is the same as for
the “open script” boxes beneath the code samples. If your reader doesn’t seem to be responding to your clicks on the image,
you can follow the link beneath it to the movie file on the publisher’s website (if your PDF reader can’t follow hyperlinks
either, you really must find a better one). All of the animations in this book are in the form of animated gifs, which should
work in any reasonable web browser and in many image viewing applications.
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Functions and Variables
You can define variables, to store a value in a name, and functions of multiple variables.
We’ll use these basic programming features in most of our scripts.

set xr [-1 : 1]

a = 7

f(x, d) = d * x**2

plot f(x, a) lw 2 title "f(x, 7)"


set xr [-1 : 1]
a = 7
f(x, d) = d * x**2
plot f(x, a) lw 2 title "f(x, 7)"
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The Ternary Operator
Gnuplot’s syntax includes a ternary operator, which works in gnuplot similar to the way
it works in C and some other programming languages. The structure is C ? A : B,
where C is a condition that evaluates to true or false. If the condition is true, then A is
read and the rest of the structure is skipped; if C is false, then B is read and A is ignored.
In other words, it is a concise way to write “if C then A; else B”. The ternary operator is
especially useful in defining functions piecewise over subintervals of the domain, as in the
example below. In the script, NaN is used for a “missing value”: it stands for not a number,
and is one way to make a value undefined in gnuplot. The plot can represent a harmonic
oscillator with a frictional damping that is turned on at t = 0. (The observant may notice
that the function is defined twice at x = 0. This is to avoid the small inter-sample gap that
would appear otherwise.) We’ll learn a somewhat simpler method to create this plot in a
later chapter.

set samples 2000

set grid lt -1

set xr [-4*pi : 4*pi]

f(x) = x <= 0 ? sin(x) : NaN

g(x) = x >= 0 ? exp(-x/5.)*sin(x) : NaN

plot f(x) lw 2, g(x) lw 2


set samples 2000
set grid lt -1
set xr [-4*pi : 4*pi]
f(x) = x <= 0 ? sin(x) : NaN
g(x) = x >= 0 ? exp(-x/5.)*sin(x) : NaN
plot f(x) lw 2, g(x) lw 2
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Basic Iteration
Gnuplot’s plot and set commands can be extended with a looping, or iteration, syntax.
Adding the phrase for [i = 1 : 10] (for example) immediately after a plot command
executes the command repeatedly, substituting the values 1…10 for each occurrence of
the variable i in the command; the end of the iterated command comes at the next comma
or end of line. The same thing works for any set command, except that the set values
persist until they are reset. Here is an example of the iterated plot command. Notice the
appearance of the variable n in both the functions to be plotted and in the titles, where we
use a function that uses the string catenation operator with the ternary syntax to avoid
writing the redundant “1”.

set key rmargin

set samples 1000

set xr [0 : pi]

f(n) = n > 1 ? n : ""

g(n) = n > 1 ? "/".n : ""

plot for [n = 1 : 5] sin(n*pi*x)/n\

title "sin(".f(n)."πx)".g(n)


set key rmargin
set samples 1000
set xr [0 : pi]
f(n) = n > 1 ? n : ""
g(n) = n > 1 ? "/".n : ""
plot for [n = 1 : 5] sin(n*pi*x)/n\
   title "sin(".f(n)."πx)".g(n)
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The Special Filename “+”
In many of the examples in previous chapters we’ve used the shorthand “” to refer to a
previously mentioned filename. This is an example of one of gnuplot’s special filenames;
there are several. Another one has the name “+”. It has one purpose: to allow you to
enjoy all the benefits of the using clause, normally applied to the columns of a data file,
but when plotting expressions. For example, we can achieve the following special effect
by using the every command that we first saw in Chapter 3. Remember that the bare
number “1” in the u (using) clause refers to the first “column”, which in this case is merely
the automatically generated series of x coordinates; and, within parentheses, you need to
prepend a “$” to refer to a column number.

set samp 30

unset key

set xr [-pi : 0]

set yr [-1.5 : 0.25]

plot "+" u 1:(sin($1)) with points pt 7 lc "blue",\

"" u 1:(sin($1)) ev 2 with points ps 2 pt 7 lc "red"


set samp 30
unset key
set xr [-pi : 0]
set yr [-1.5 : 0.25]
plot "+" u 1:(sin($1)) with points pt 7 lc "blue",\
   "" u 1:(sin($1)) ev 2 with points ps 2 pt 7 lc "red"
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Nested Iteration
You can also iterate within an iteration. The nested iteration in the example below is
equivalent to the loop (in pseudocode) for i = 1 to 5 { for j = 1 to 5 { plot,

etc. } }. It also illustrates another application of the “+” special filename.

unset key

set xr [0 : 6]

set yr [0 : 6]

plot for [i = 1:5] for [j = 1:5] "+"\

u (i):(j) ps 10 pt 7


unset key
set xr [0 : 6]
set yr [0 : 6]
plot for [i = 1:5] for [j = 1:5] "+"\
   u (i):(j) ps 10 pt 7
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Iteration Over Words
If you make a list of words, separated by spaces, you can iterate over this list with a
convenient syntax:

unset key

set xr [-5:5]

widths = "30 15 5"

plot for [width in widths] x**3 lw width


unset key
set xr [-5:5]
widths = "30 15 5"
plot for [width in widths] x**3 lw width
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String Formatting
If you have programmed in C, you are familiar with the sprintf function, which inter-
polates numbers into strings to create new strings, with many options for the formatting
of the interpolated values. Gnuplot makes the C sprintf function available in scripts,
as well as its own gprintf function. Since the latter is sometimes more convenient for
use in gnuplot, and its syntax is used in the formatting of axis labels, etc., we’ll give an
example of its use. gprintf will be used in many examples later on, and is essential
knowledge for the well educated gnuplotter. Here’s an example that shows several of its
options:

unset key

set yr [0:1]

set label 1 gprintf("Float default: %f", 1) at graph .1,.6

set label 2 gprintf("As integer: %0.0f", 2) at graph .1,.8

set label 3 gprintf("Exactly %0.12f", 3) at graph .1,.3

set label 4 gprintf("%1.1t%cBytes", 4.5E9) at graph .6,.3

set label 5 gprintf("Science: %1.1t × 10^%S", 5.5E9) at graph .6,.6

set label 6 gprintf("Rounding to %.0Pπ", 6) at graph .6,.8

set label 7 gprintf("Small prefixes too: %1.1t%csec", 7.5E-6)\

at graph .4,.15

set xr [-10**8 : 10**8]

set format x "%.1Es"

plot -1


unset key
set yr [0:1]
set label 1 gprintf("Float default: %f", 1) at graph .1,.6
set label 2 gprintf("As integer: %0.0f", 2) at graph .1,.8
set label 3 gprintf("Exactly %0.12f", 3) at graph .1,.3
set label 4 gprintf("%1.1t%cBytes", 4.5E9) at graph .6,.3
set label 5 gprintf("Science: %1.1t × 10^%S", 5.5E9) at graph .6,.6
set label 6 gprintf("Rounding to %.0Pπ", 6) at graph .6,.8
set label 7 gprintf("Small prefixes too: %1.1t%csec", 7.5E-6)\
  at graph .4,.15
set xr [-10**8 : 10**8]
set format x "%.1Es"
plot -1



Lee Phillips: Gnuplot 5 2nd ed. Advanced Scripting 128

Iteration Over Blocks
Any group of statements can be iterated over, not merely plot or set commands. The
command to accomplish this is do for, followed by an iterator, the expression in square
brackets, using the same syntax as in the plot for version, and a block of statements
within curly braces (“{}”). In this example script, we’ve use sprintf instead of gprintf
to format the labels, because gprintf only accepts one variable. The plot -1 command
at the end is to force gnuplot to plot the labels, which lie dormant, waiting for a plot
command to bring them to life. We only want the labels, however, so we plot something
that lies outside of the graph’s range.

unset key

set grid lt -1

set xr [0 : 6]; set yr [0 : 30]

do for [i = 1 : 5] {

f = i**2

set label i sprintf("(%.0f, %.0f)", i, f) at first i, f\

point ps 3 pt 7 offset 2,0

}

plot -1


unset key
set grid lt -1
set xr [0 : 6]; set yr [0 : 30]
do for [i = 1 : 5] {
f = i**2
set label i sprintf("(%.0f, %.0f)", i, f) at first i, f\
   point ps 3 pt 7 offset 2,0
}
plot -1
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Animations
The ability to iterate over groups of statements opens up many possibilities. This example
shows how to create a large number of sequential plots, saving each one in its own
file. If you take care to name the files so that their sequence, when globbed in the
shell, is preserved, you can use various utilities to stitch them together into a movie.
One convenient and powerful toolkit is Imagemagick, which provides a command that
can make your animation by typing convert frame* -delay 10 movie.gif. This
command will work in Linux (and some other Unix-like systems) after running the
example script, which creates the frames in the correct naming order. You can experiment
with different delays, which inserts an inter-frame pause, and other options, to get the
effect you desire.

When making an animation it is important to first set the xrange and yrange to avoid the
ranges possibly changing between frames. Nothing is highlighted in this script, because
it uses no new commands. After you run it, you will have 100 new files in your directory,
which you can turn into a movie. You may want to delete the frames afterwards to recover
disk space.

set term pngcairo

set samp 2000; unset key

set xr [0 : 10]; set yr [-1 : 1]

e = exp(1)

do for [i = 1 : 100]{

set out gprintf("frame%03.0f.png", i)

j = i/10.0

plot sin(10*x)*e**(-(x-j)**2) }

set out

Click or double-click the image to open, or go here.


set term pngcairo
set samp 2000; unset key
set xr [0 : 10]; set yr [-1 : 1]
e = exp(1)
do for [i = 1 : 100]{
  set out gprintf("frame%03.0f.png", i)
  j = i/10.0
  plot sin(10*x)*e**(-(x-j)**2) }
set out


0.5

-0.5

10



https://alogus.com/static/g5/876755483.gif
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Command Lines are Cool
In the previous example we mentioned that you can process the set of frames created
by the script with any program capable of stitching images together into a movie — and
that while there are many such programs, we recommended a command-line tool as
particularly convenient. One reason for recommending command-line programs is the
power and flexibility that you gain through the ease of combining their powers. For
example, gnuplot can call upon any command that you can use from the shell, with its
backtick syntax. You can therefore perform all the processing required to make the
animation, including regaining space on your disk by removing the individual frames,
all from the gnuplot script. We didn’t include these commands because we are trying to
adhere to a policy of giving examples that work as-is for all users, and you may not have
Imagemagick installed. But if you do, you can simply append the convert command as
given, surrounded by backtick characters, and something like rm frame*, to the end of
the script. This is called “command substitution”, because any standard output from the
shell command is substituted, in place, in the script. Any errors from the command are
simply printed on the console. Here is an example using the backtick syntax that should
work for most users on Unix-like systems:

set title "Plotted on " . "`date`"

set xr [-pi : pi]; set samp 2000

plot sin(1/x)


set title "Plotted on " . "`date`"
set xr [-pi : pi]; set samp 2000
plot sin(1/x)
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Externally Processed Data Files
Gnuplot supports a special syntax for preprocessing a data file. This is extremely useful
for doing such things as sorting a file by one of its columns before plotting. You can use
any commands on your system, including, of course, those you write yourself. This only
works on Unix-type systems, such as Linux and MacOS. Our example will apply the word
count utility to the configuration files in a standard Linux directory, plotting the average
word length found in each file. Any errors, such as files that you don’t have permission
to access, will be printed when you run the script, but it will still work, if your system has
the wc utility, and is Unix-based. This is a case where your graph will look different from
the one in this book, because your system will have different files. We found that most
configuration files had word lengths between five and 10 characters, with some outliers.
The file with very long words turned out to be a list of pathnames.

unset key

set xr [0 : 2000]

plot "< wc /etc/*.conf" u 2:($3/$2) w points pt 7 ps 2,\

'' u 2:($3/$2):4 with labels offset 14, 0


unset key
set xr [0 : 2000]
plot "< wc /etc/*.conf" u 2:($3/$2) w points pt 7 ps 2,\
  '' u 2:($3/$2):4 with labels left offset 1, 0
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Invocation
Here we explain the several options for running gnuplot. You can, of course, just type
gnuplot and open the interactive prompt. This is the best way to explore and learn about
the program; you can type lines, paste in whole scripts, or load them — and you can
access the interactive help. If you have a script on disk, you can type gnuplot -p -c

scriptname; gnuplot will run it and quit. Without the -p option, any plot windows that
it displays will vanish when gnuplot quits. You can also feed commands into gnuplot
directly, this way:

gnuplot -p -e "plot sinh(x)"

This will immediately display a windowwith the hyperbolic sine function, without leaving
gnuplot running. The -e flag is a convenient way to get a quick look at some data or
function.
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Script Arguments
Within a gnuplot script, you can place references to strings that are passed in as arguments
when you run the script on the command line using the -c flag. In this way you can
make a script that can be instantly reused to make variations of a graph for different
values of some parameters, including the names of datafiles to be analyzed. If you save
the one-line script below with the name “argexample.gn”, and invoke it on the command
line as gnuplot -p -c argexample.gn 1 3, the displayed plot should pop up.

plot sin(ARG1*x), cos(ARG2*x)
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Macros
To help save typing and make your scripts more expressive, gnuplot offers a string macro
facility. You can store a command or part of a command in a named string variable, and
insert the contents of the string in a command using the @ character. An example should
make this clear:

bigBlueDots = 'with linespoints lc "blue" pt 7 ps 4'

thickRedLine = 'with line lc "red" lw 4'

plot cosh(x) @bigBlueDots pi 7, sinh(x) @thickRedLine

We’ve snuck in another command: in pi 7, pi stands for pointinterval. It causes only
every seventh point to be plotted, so we can draw fat circles without them overlapping,
while keeping the actual sampling rate high.
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Arrays
We’ve already seen how to loop over the words in a string; this treats the string as a
kind of list or array, and its words as array elements. Gnuplot also has a genuine array
datatype: gnuplot arrays can hold a mixture of datatypes, but have a fixed length that
must be declared when they are initialized. An array’s length can be discovered by putting
its name between bars: “|array|”. Let’s play with them a little:

unset key

array a[5]

array b[5]

set xr [1 : 7]; set yr [0 : 30]

set key spacing 2

set grid lt -1

do for [i = 1 : |b|]\

{ a[i] = i**2

b[i] = sprintf("(%.0f, %.0f)", i, a[i]) }

plot for [i = 1 : |a|] "+"\

u (i):(a[i]) pt 7 ps 3 title b[i]


unset key
array a[5]
array b[5]
set xr [1 : 7]; set yr [0 : 30]
set key spacing 2
set grid lt -1
do for [i = 1 : |b|]\
   { a[i] = i**2
     b[i] = sprintf("(%.0f, %.0f)", i, a[i]) }
plot for [i = 1 : |a|] "+"\
   u (i):(a[i]) pt 7 ps 3 title b[i]
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if and else

The gnuplot scripting language has borrowed some other concepts from programming
languages. The if and else statements allow you to add some flow control to your scripts,
conditionally executing blocks of statements. In the example below we also introduce the
string comparison operator. To test whether two numbers are equal, use ==; but to test
for the equality of strings, use eq. This script will take a look at the distribution of values
returned by the built-in random function.

unset key

q = 1000

set xr [0 : q]

set yr [0 : 1]

array a[q]; array b[q]

ro = 0.5

do for [i = 1 : q] {

r = rand(0)

a[i] = r

if (r > ro) { b[i] = "green" }

else { b[i] = "red" }

ro = r }

plot for [i = 1 : q] "+" u (i):(a[i]) with points ps 3\

pt b[i] eq "red" ? 11 : 9 lc rgbcolor b[i]


unset key
q = 1000
set xr [0 : q]
set yr [0 : 1]
array a[q]; array b[q]
ro = 0.5
do for [i = 1 : q] {
   r = rand(0)
   a[i] = r
   if (r > ro) { b[i] = "green" }
   else { b[i] = "red" }
   ro = r }
plot for [i = 1 : q] "+" u (i):(a[i]) with points ps 3\
   pt b[i] eq "red" ? 11 : 9 lc rgbcolor b[i]
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while, break, and continue

These keywords work in gnuplot scripts just as they do in other programming languages
that use them. while repeats a block while a condition remains true; break stops an
iteration immediately, leaving the block; and continue skips to the end of the block and
continues with the next iteration, if there is one. The script below uses each of these
keywords to generate a series of random points, storing the ones that lie between two
curves in two arrays. We use the common construction while 1 to create an infinite
loop, breaking out of the loop when we have collected enough points. In order to plot
the arrays with a minimum of fuss, we set the samples to their length, and index them by
column 0, which is a special “pseudocolumn” that contains the index of each data point;
it starts at zero, so we need to add 1 to it. This script also introduces the logical operator
||, for “or”; “and” is represented by &&. We also use the set print command, which
directs print output to a file.

set print "xmas.dat"

set xr [-1 : 1]; set yr [0 : 1]

unset key

n = 10000; set samp n; count = 0

upper(x) = 1-6*x**2; lower(x) = x**2

while 1 {

xx = 2*rand(0)-1

yy = rand(0)

if (yy >= upper(xx) || yy <= lower(xx)) { continue }

else {

count = count + 1

if (count > n) { break }

print sprintf("%f %f", xx, yy) }}

plot "xmas.dat" pt 6 ps 0.5 lc "forest-green"


set print "xmas.dat"
set xr [-1 : 1]; set yr [0 : 1]
unset key
n = 10000; set samp n; count = 0
upper(x) = 1-6*x**2; lower(x) = x**2
while 1 {
   xx = 2*rand(0)-1
   yy = rand(0)
   if (yy >= upper(xx) || yy <= lower(xx)) { continue }
   else {
      count = count + 1
      if (count > n) { break }
      print sprintf("%f %f", xx, yy) }}
plot "xmas.dat" pt 6 ps 0.5 lc "forest-green"
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Controlling gnuplot from Programs

We can use gnuplot from within any programming language that can communicate with external processes through a
socket. Gnuplot is designed to be remote-controlled this way, which allows us to use it as a plotting engine from within our
simulation or analysis code. This is one of the core features that makes gnuplot so powerful. In order to give a concrete
llustration of this capability, we need to choose a particular programming language to construct an example. We’ll use C.

Here is a minimal example that shows how to open a socket to a gnuplot process and send it instructions. Here we just
send it a simple plotting command, but we could also send it lists of numbers to plot, calculated by the program.

#include <stdio.h>

void main()

{

FILE* gnuplot;

gnuplot = popen("gnuplot -persist", "w");

if (gnuplot != NULL)

fprintf(gnuplot, "plot sin(1/x)\n");


#include <stdio.h>
void main()
{
  FILE* gnuplot;
  gnuplot = popen("gnuplot -persist", "w");
  if (gnuplot != NULL)
  fprintf(gnuplot, "plot sin(1/x)\n");
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Python

There exist libraries for some programming languages that make communicating with gnuplot even easier. Once such
library is gnuplot.py for Python. Here is a fairly self-explanatory example that shows how to use it. In addition to Python,
you need numpy, which you probably already have installed if you are using Python for numerical work:

from numpy import *

import Gnuplot

g = Gnuplot.Gnuplot()

g.title('Normally Distributed Random Data')

g.xlabel('x')

g.ylabel('y')

g('set term pngcairo')

g('set out "GnuplotFromPython.png"')

x = arange(1, 1000)

y = [random.normal() for i in x]

g.plot(Gnuplot.Data(x, y))


from numpy import *
import Gnuplot
g = Gnuplot.Gnuplot()
g.title('Normally Distributed Random Data')
g.xlabel('x')
g.ylabel('y')
g('set term pngcairo')
g('set out "GnuplotFromPython.png"')
x = arange(1, 1000)
y = [random.normal() for i in x]
g.plot(Gnuplot.Data(x, y))
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Smoothing
Gnuplot has the ability to fit smooth curves to data. The term “smooth” in gnuplot
happens to refer to other forms of calculation than those that might be normally called
“smoothing”. This example demonstrates the bezier smoothing index{smoothing!bezier}
routine, which seems to be one of the more useful ones available. For a rundown on the
others, type help smooth:

array a[1000]

do for [i = 1 : |a|]{

a[i] = sin(i * 2*pi/|a|)

a[i] = a[i] + (rand(0) - 0.5)

}

plot a with line lc "grey", a smooth bezier lw 5 title "Bezier smoothed",\

sin(2*pi*x/|a|) lc "red" title "Sine"


array a[1000]
do for [i = 1 : |a|]{
  a[i] = sin(i * 2*pi/|a|)
  a[i] = a[i] + (rand(0) - 0.5)
}
plot a with line lc "grey", a smooth bezier lw 5 title "Bezier smoothed",\
sin(2*pi*x/|a|) lc "red" title "Sine"
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Fitting Functions to Data

If you have some idea of the functional form of your data, gnuplot can calculate the values of the function’s parameters to
find the best overall fit. This can be used as a form of smoothing, to illustrate trends in noisy data, or to test a model for a
mechanism underlying the data, as we do here. This is a “real life” example, taken directly from a book chapter that I was
writing while working on this book. The chapter is about solar energy, and the book, scheduled to appear in the Spring of
2018 and published by Elsevier, is about climate science. I used data from the U.S. Energy Information Administration; the
file is included in the data archive that comes with this book.
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In order to fit a function to data, define your assumed form of the function, leaving its
free parameters undefined. The fit command, highlighted here, takes the function name,
the data columns, and, following the via keyword, the list of parameters to vary. Gnuplot
will calculate the values of these parameters that produce the best fit of the function to
the data. You will get a report, printed at the console, of the details of the fitting process
and the quality of the fit. Gnuplot remembers the results, so you can use the parameters
(or the function) in subsequent commands; here we plot the fitted function alongside the
data.

set key font "Helvetica,7"

set key at graph .9,.9

set xtics rotate by -90 offset 0,.4

set grid lc "#666666"

set tics font "Helvetica, 7"

set xtics 2

set ylab "10^{12} BTU" font "Helvetica, 8" offset 2, 0

set datafile separator comma

f(x) = a*exp(b*x)

ys = 2010

set xr [0 : 2016-ys]

fit f(x) "solarConsumptionYearly.csv" u ($2-ys):3 via a,b

set xr [1989 : 2016]

plot "solarConsumptionYearly.csv" u 2:3 with lines lw 3\

title "Solar energy consumption",\

[ys : 2016] f(x-ys) lw 4 dt 3 title "Exponential fit"


set key font "Helvetica,7"
set key at graph .9,.9
set xtics rotate by -90 offset 0,.4
set grid lc "#666666"
set tics font "Helvetica, 7"
set xtics 2
set ylab "10^{12} BTU" font "Helvetica, 8" offset 2, 0
set datafile separator comma
f(x) = a*exp(b*x)
ys = 2010
set xr [0 : 2016-ys]
fit f(x) "solarConsumptionYearly.csv" u ($2-ys):3 via a,b
set xr [1989 : 2016]
plot "solarConsumptionYearly.csv" u 2:3 with lines lw 3\
      title "Solar energy consumption",\
      [ys : 2016] f(x-ys) lw 4 dt 3 title "Exponential fit"
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Stats
The stats command calculates a host of statistical parameters describing your data. They
are all printed out at the terminal, and saved for use in subsequent commands. Type help
stats for a description of them all (and how to control the printing of the report). Here
we just show how to use the command in a simple case, and plot three of the parameters
along with the random data from which they are calculated: the maximum, minimum,
and mean:

set key rmargin

set xtics rot by -45

array a[1000]

do for [i = 1 : |a|]{

a[i] = rand(0) - 0.5

}

set offset 0, 0, .1, .1

stats a

plot a with line lc "grey", STATS_min lw 4,\

STATS_max lw 4, STATS_mean lw 4


set key rmargin
set xtics rot by -45
array a[1000]
do for [i = 1 : |a|]{
  a[i] = rand(0) - 0.5
}
set offset 0, 0, .1, .1
stats a
plot a with line lc "grey", STATS_min lw 4,\
   STATS_max lw 4, STATS_mean lw 4



Chapter 6
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Most of our graphs so far in this book have been plots of one quantity versus another quantity, or in the case of parametric
plots, two coordinates that depend on a single third parameter. These are called two dimensional (2D) plots, because they
involve two variables. The exceptions were plots that included extra information such as errors, which were indicated
in various ways. In this chapter, we enter into the world of three-dimensional surface plots. These are visualizations of an
independent variable, usually called “z”, that depends on two independent variables, “x” and “y”. The value of z is represented
by the height of a surface in three dimensions, projected, of course, onto the plane of the paper or screen (although gnuplot
can plot to a huge array of output devices, the current version does not yet include a 3D printer terminal). Along with
the height of the projected surface, the value of z may also be represented by color, and the shape of the surface may be
made more apparent by the use of simulated illumination. The surface may also be colored to indicate a second independent
variable, in which case we have a type of 4D plot (the amplitude and phase of a complex function, for example).

Three dimensional surface plots, and the relationships they illustrate, are quite common and useful. Some examples are
equations of state (for example, plotting pressure vs. temperature and density), all sorts of weather data (air temperature
vs. latitude and longitude), and even actual height, such as in a topographic map.

We can also make parametric plots in 3D, which can take the form of a path through space or of a (potentially quite
complex) surface, depending on whether we use one or two parameters.
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Wireframe Surfaces with splot

The splot, or surface plot, command, is our basic tool for making 3D plots. As we shall
soon see, it can do more than plot surfaces, but that is where we start.

First, a note about sampling. As you probably recall, you can change the sampling rate
of a plotted function in a 2D plot by set samples. This also works in 3D, but you can
specify a different number of samples in the x and y directions, if you wish, by providing
two numbers (if you provide only one, gnuplot will use it for both directions). But there
are two other numbers you must be aware of when drawing 3D surfaces. Gnuplot builds
the surface by drawing a set of isolines at right angles to each other, parallel to the x and
y axes. The samples are taken along each isoline, but you can also control the number
of isolines; the command is set isoline x, y, where isolines can be abbreviated
to, for instance, iso. The default is only 10 isolines, which is usually too coarse to be
useful, so you will nearly always want to increase that. The tradeoff is slower plotting
and a slower response to interactive rotation and scaling. Because different values for
isolines and samples can have unexpected effects when we build more complex 3D
plots, it’s a good rule of thumb to set them all the same, unless you have a specific reason
for doing otherwise.

set iso 60

set samp 60

unset key

set title "J_0(r^2)"

set xrange [-4:4]

set yrange [-4:4]

set ztics 0.5

set view 30, 55

splot besj0(x**2 + y**2)


set iso 60
set samp 60
unset key
set title "J_0(r^2)"
set xrange [-4:4]
set yrange [-4:4]
set ztics 0.5
set view 30, 55
splot besj0(x**2 + y**2)
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The View
Since 3D plots are projections of an imaginary 3D object, it can be viewed from different
angles. This is controlled by the set view command, which, in its simplest version, takes
two numbers, the first for the rotation about the x axis, the second around z, in degrees
(the x-rotation is performed first). It can be difficult to determine what is the most useful
view for a particular plot without seeing it and experimenting; therefore, even if our final
product is intended to be a file, a common workflow is to first create the plot using an
interactive terminal (x11 or wxt). Then we can rotate the plot with the mouse until we
find the best view. We can now reset the terminal to the final output device that we need,
specify the output file, and simply say replot. The current view settings are available by
typing show view, and a subset is displayed in the plot window.

set iso 60

set samp 60

unset key

set title "J_0(r^2)"

set xrange [-4:4]

set yrange [-4:4]

set ztics 0.5

set view 90, 45

splot besj0(x**2 + y**2)


set iso 60
set samp 60
unset key
set title "J_0(r^2)"
set xrange [-4:4]
set yrange [-4:4]
set ztics 0.5
set view 90, 45
splot besj0(x**2 + y**2)
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Hidden Line Removal
Our plots so far in this chapter are essentially wireframes that we can see through. We
can also render the surface as opaque, by simply adding a single command, highlighted in
the script below. Gnuplot will also, unless plotting in monochrome, draw the two sides of
the surface in contrasting colors. Gnuplot makes the surface appear opaque by removing
from the plot any part of the surface, other surfaces, and other plot elements (such as the
axes and tic labels) that are behind the surface from our point of view. The name of the
setting refers to this technique of hidden line removal. When making hidden line plots,
the sample setting has no effect; the surface resolution is controlled solely by the number
of isolines.

set iso 100

set hidden3d

unset key

set title "J_0(r^2)"

set xrange [-4:4]

set yrange [-4:4]

set ztics 0.5

set view 105, 150

splot besj0(x**2 + y**2)


set iso 100
set hidden3d
unset key
set title "J_0(r^2)"
set xrange [-4:4]
set yrange [-4:4]
set ztics 0.5
set view 105, 150
splot besj0(x**2 + y**2)
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Styling the Isolines
The isolines making up a surface can be styled freely, just as in 2D plotting. You can even
ask for dashed lines, if you dare. But when line properties are chosen while hidden3d is
set, the top-and-bottom distinction that gnuplot, by default, draws during hidden line
removal is not performed: both sides of the surface will follow your settings.

set iso 30

set view 110, 45

set hidd

set xr [-1 : 1]

set yr [-1 : 1]

splot exp(-(x**2 + y**2)*5) w lines lc "green" lw 3


set iso 30
set view 110, 45
set hidd
set xr [-1 : 1]
set yr [-1 : 1]
splot exp(-(x**2 + y**2)*5) w lines lc "green" lw 3
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Wireframe Surfaces with Variable Coloring
We can color the lines forming the wireframe surface according to the z-value, providing
an extra visual cue to help convey the shape of the function or data being visualized.
This works with or without hidden line removal. If you are plotting a data file or using
the “++” filename, you can take the color value from the third column or from a fourth
column in the using command. When using splot, a palette is always active, so it can
be used to color the isolines.

set iso 50; set samp 50

set view 50,30

set hidd

set xr [-1 : 1]

set yr [-1 : 1]

splot exp(-(x**2 + y**2)*5) lc pal lw 2


set iso 50; set samp 50
set view 50,30
set hidd
set xr [-1 : 1]
set yr [-1 : 1]
splot exp(-(x**2 + y**2)*5) lc pal lw 2
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Setting Top and Bottom Styles
When splotting a function while hidden3d is set, gnuplot will draw the “top” and
“bottom” of the surface in different colors. You can set the isoline color and thickness,
as in the previous examples, but then you will get the same line style on both sides of
the surface. This section explains how to set line properties for the top and bottom to
the colors and thickness that you want (the colors can be set as you wish, but both sides
will be rendered with the same line thickness: the one set for the top). Gnuplot chooses
the line properties from the existing linetypes. Each terminal has a series of predefined
linetypes, that you can see by giving the command test. When using color, these are, by
default, some sequence of colors, at thickness 1. When switching to set monochrome,
some of the lines may turn into dash patterns, but gnuplot will not select these for the
surface, just using black lines in this case. The program will draw the top of the first
surface using linetype 1, the bottom (by default) linetype 2, the top of the second surface
with linetype 3, etc. To change the color and thickness used for the isolines, redefine the
properties of the linetypes, as in the example below. You can also, or instead, give the
command set hidden offset n, which will increase the linetype index between front
and back to n.

set view 120, 30

unset key

set hidd

set iso 30

set lt 1 lc "seagreen" lw 3

splot exp(-(x**2 + y**2)/10)


set view 120, 30
unset key
set hidd
set iso 30
set lt 1 lc "seagreen" lw 3
splot exp(-(x**2 + y**2)/10)
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Solid Surfaces
Using hidden line removal turns our wireframe plots into a solid-appearing surface.
The numerical value encoded into the surface’s height can be visually estimated by the
rendering of the perspective in conjunction with the tics on the vertical axis. But gnuplot
can also indicate the z value by coloring the surface (not merely the lines forming the
wireframe), which makes it easier to interpret. Use the pm3d plotting style for this; it has
many options, which we’ll explore below, but simply invoking it does much of what we
want.

The pm3d style began as an independent enhancement to gnuplot, and was eventually
absorbed into the main program. This history results in a certain awkwardness in its use.
Although the syntax treats pm3d as a setting for splot, and the splot command must be
invoked to use it, it’s really a separate surface drawing routine. For this reason, when
making the more complex plots that we’ll visit later in this chapter, it’s helpful to adhere
to certain combinations of settings and rules of thumb, to avoid unexpected results. Here
is a script that plots our Bessel function as an opaque surface, colored according to its
value:

set iso 100

unset key

set xrange [-4:4]; set yrange [-4:4]

set ztics 0.5

set view 40, 60

splot besj0(x**2 + y**2) with pm3d


set iso 100
unset key
set xrange [-4:4]; set yrange [-4:4]
set ztics 0.5
set view 40, 60
splot besj0(x**2 + y**2) with pm3d
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Solid Surfaces with Lines
pm3d surfaces are constructed by defining a set of quadrilaterals and coloring each one
with an average value that represents the function or data in that quadrilateral. Sometimes
the surface can be better visualized if the borders of these quadrilaterals are shown clearly.
Here is a script that does just that:

set iso 40

set pm3d border lw 1

unset key

set xrange [-4:4]; set yrange [-4:4]

set ztics 0.5

set view 40, 60

splot besj0(x**2 + y**2) lc "white" with pm3d


set iso 40
set pm3d border lw 1
unset key
set xrange [-4:4]; set yrange [-4:4]
set ztics 0.5
set view 40, 60
splot besj0(x**2 + y**2) lc "white" with pm3d
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Palettes
The previous pm3d plots have used gnuplot’s default color palette, a typical rainbow
spectrum. The palette is the sequence of colors that are mapped onto z values; it can be
set to anything you like, in several different ways. For the vast majority of cases, one
simple method for defining the palette will be sufficient; if your needs are more specialized,
you can ask gnuplot for the details by typing help palette. First, a monochrome palette
can be activated by a simple command, shown below (just saying set monochrome, as
before, will not redefine the palette). Let’s give our friend the Bessel function a rest, and
rest, and reproduce the plot used on the cover of this book:

set pal grey

set iso 100

unset xtics

unset ytics

unset ztics

unset key

unset border

set xr [0.06:1]

set yr [0.06:1]

set view 66,28

splot 1/x**3 + 200*sin(30*y) + 1900*exp((-(x-.6)**2-(y-.6)**2)/.04)\

with pm3d


set pal grey
set iso 100
unset xtics
unset ytics
unset ztics
unset key
unset border
set xr [0.06:1]
set yr [0.06:1]
set view 66,28
splot 1/x**3 + 200*sin(30*y) + 1900*exp((-(x-.6)**2-(y-.6)**2)/.04)\
   with pm3d
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Palette Definitions
One option for creating a range of colors other than the default, or the greyscale palette,
is to use what gnuplot calls a palette definition. This is a set of colors, specified using RGB
values or color names, where each color is associated with a number from 0 to 1; these
numbers represent the full range of the colorbox. The colorbox range, like the z axis, by
default covers the actual range of values being plotted; but, also like the axes, it can be
set to any values using the command set cbrange [a : b]. For example, the number
0 in the palette definition means the beginning of the cbrange, 0.5 is exactly halfway
from the beginning to the end, and 1 is the maximum value. The palette is constructed
by linearly interpolating between the values you specify in the definition. To illustrate
the syntax of this command, some examples: the greyscale palette could be built with
(using some abbreviations) set pal def (0 "black", 1 "white). Here’s the above
script with another example:

set pal def (0 "blue", 0.5 "red", 1 "white")

set iso 100

unset xtics

unset ytics

unset ztics

unset key

unset border

set xr [0.06:1]

set yr [0.06:1]

set view 66,28

splot 1/x**3 + 200*sin(30*y) + 1900*exp((-(x-.6)**2-(y-.6)**2)/.04)\

with pm3d


set pal def (0 "blue", 0.5 "red", 1 "white")
set iso 100
unset xtics
unset ytics
unset ztics
unset key
unset border
set xr [0.06:1]
set yr [0.06:1]
set view 66,28
splot 1/x**3 + 200*sin(30*y) + 1900*exp((-(x-.6)**2-(y-.6)**2)/.04)\
   with pm3d
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Palette Discontinuities
Sometimes when visualizing data or a mathematical function we are interested in high-
lighting a particular value; or data above and below a certain value may have different
significance. If we can place a sharp break in the otherwise smooth color gradients in the
palette used to color our surface, that can supply the needed emphasis. To do this using
the set pal def command, repeat a number in the list, supplying a different color each
time. The example below inserts a single discontinuity in the palette, but you can have as
many as needed:

set pal def (0 "black", 0.5 "blue", 0.5 "red", 1 "white")

set iso 100

unset xtics

unset ytics

unset ztics

unset key

unset border

set xr [0.06:1]

set yr [0.06:1]

set view 66,28

splot 1/x**3 + 200*sin(30*y) + 1900*exp((-(x-.6)**2-(y-.6)**2)/.04)\

with pm3d


set pal def (0 "black", 0.5 "blue", 0.5 "red", 1 "white")
set iso 100
unset xtics
unset ytics
unset ztics
unset key
unset border
set xr [0.06:1]
set yr [0.06:1]
set view 66,28
splot 1/x**3 + 200*sin(30*y) + 1900*exp((-(x-.6)**2-(y-.6)**2)/.04)\
   with pm3d
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Good and Bad Color Palettes

Many commonly used color palettes seen in presentations and papers, and the default palettes inmany plotting programs, are
bad choices for scientific visualization, or any presentation of data that aims to be accurate and versatile. They are inaccurate
because bright areas in the palettes can create the impression of features in the data that are not really there; and they lack
versatility because they don’t appear properly when printed in monochrome, and because they create difficulties for those
with defects in color vision. Naively constructed palettes using the techniques described above are likely to share these
defects; they may be useful in research and exploration, or for creating purely illustrative graphics, but should be avoided
in the publication of real data. Fortunately, researchers have devised palettes that avoid all these difficulties. Gnuplot has a
convenient way to make use of one type of improved palette, the cubehelix. Cubehelix palettes take into account the fact that
human vision is more sensitive to some colors than others; the palette increases monotonically in perceived intensity while
cycling through the colors. When printed in monochrome, a cubehelix palette maintains a smooth increase in brightness;
the color sequence is also friendly to readers who may have one of several types of color vision defects. The gnuplot
implementation allows you to pick the starting color, expressed as an angle on the color wheel, the number of cycles to take
through the color wheel, and the overall saturation. It is affected by another setting we haven’t yet discussed, changed by
set palette gamma, as is the greyscale palette, but you shouldn’t have to worry about this setting unless you need to color
match between output devices. Cubehelix palettes are excellent choices for data visualizations in science, engineering, and
any technical field where accurate interpretation is the aim.

https://www.mrao.cam.ac.uk/~dag/CUBEHELIX/
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Cubehelix Palettes
The new command in the script below is the cubehelix option to the set palette

command. The first argument is the starting angle on the color wheel in radians; the
second is the number of times through the color wheel (negative to go “backwards”); and
the last is the overall saturation.

set iso 500

set palette cubehelix start 0 cycles -1. saturation 1

splot exp(-(x**2 + y**2)*.04) with pm3d


set iso 500
set palette cubehelix start 0 cycles -1. saturation 1
splot exp(-(x**2 + y**2)*.04) with pm3d
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Cubehelix Stripes
If you specify a large number of “cycles” in the cubehelix palette setup, you will be
effectively be drawing contours on the surface, while maintaining the overall indication
of magnitude through apparent brightness. Gnuplot can plot actual contours on surfaces,
which we’ll get to in a later chapter, but this is another way to get a similar effect. We’ll
use this example to show how to do something else, too: change the color of the plot
background. This can be useful when using these types of palettes, which end on near-
white colors, to create more contrast between the plotted surface and the background,
which is normally white also. The command to do this creates an object, which is a
concept that we’ll also explore in depth in a future chapter. The background color can
also be changed with a terminal option, but this doesn’t work in all terminals.

set iso 500

set palette cubehelix start pi/2 cycles -15. saturation 1

set object 1 rectangle from screen 0,0 to screen 1,1\

fillcolor rgb "aquamarine" behind

splot exp(-(x**2 + y**2)*.04) with pm3d


set iso 500
set palette cubehelix start pi/2 cycles -15. saturation 1
set object 1 rectangle from screen 0,0 to screen 1,1\
   fillcolor rgb "aquamarine" behind
splot exp(-(x**2 + y**2)*.04) with pm3d
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3D Data
Of course, gnuplot can make 3D plots of data, as well as functions. To understand the
format of the standard gnuplot 3D data file, remember that gnuplot constructs surfaces
out of sets of intersecting isolines. Each isoline plots the value along one coordinate
while the other one is held constant (iso means “same”). In the data file, there are three
columns, for x, y, z, arranged into “blocks” separated by a blank line. Each block makes
one isoline holding x constant and varying y; after gnuplot calculates all of these lines,
it then calculates the intersecting isolines. If the data is on a regular grid, the x and y
values can be omitted. This is the standard format, but gnuplot can handle others, as well;
type help splot and choose the data subsection for the details. Note that the isolines
and samples settings have no effect when plotting data. This example uses the file
“3dsample.dat”, which you can find in the publisher’s book download area. Examination
should clarify the structure that gnuplot expects to see in its standard 3D data file.

unset key

set palette cubehelix start pi/2 cycles -1 saturation 1

set cbr [0 : 1.5]

splot "3dsample.dat" with pm3d


unset key
set palette cubehelix start pi/2 cycles -1 saturation 1
set cbr [0 : 1.5]
splot "3dsample.dat" with pm3d
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The Special Filename “++”
You may recall that you can use the special filename “+” to plot functions while pretending
that you are plotting data, so that you can use the features of the using command. The
3D version of this is the “++” special filename, and it works the same way. In the splot
command below, the columns $1 and $2 refer to the x and y coordinates, respectively;
the command is the same as saying splot sin(x)*cos(y): Starting in gnuplot v. 5.2,
sampling and ranges are along the u and v axes, rather than the x and y axes, when using
++, so you can set the size of the box and the plot range independently. If you are using
an older version, change the ur and vr setting to xr and yr.

set ur [0 : pi]

set yr [0 : pi]

set hidden

set iso 50

splot "++" using 1:2:(sin($2)*cos($1)) with lines


set ur [0 : pi]
set yr [0 : pi]
set hidden
set iso 50
splot "++" using 1:2:(sin($2)*cos($1)) with lines
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Multiple Surfaces
You can plot multiple surfaces as easily as multiple curves. Here we’ll plot a function of
two variables along with an intersecting plane of dots, the latter plotted using the “++”
special file. The example shows one reason you may want to plot with “++”: it allows you
all the options that come with the using command, including skipping points with the
every subcommand. In 3D, the every subcommand accepts two numbers separated by a
colon, to set the skip in each direction. We’ve used that here to plot a smooth function
surface with 40 isolines, along with an intersecting coarser array of large dots.

set ur [0 : 10]

set vr [0 : 10]

set hidden

set view 65, 30

set iso 40; set samp 40

splot "++" u 1:2:(1) every 4:4 pt 7 ps 3 lc "grey",\

10*cos(y/3.)*sin(x/3.)


set ur [0 : 10]
set vr [0 : 10]
set hidden
set view 65, 30
set iso 40; set samp 40
splot "++" u 1:2:(1) every 4:4 pt 7 ps 3 lc "grey",\
   10*cos(y/3.)*sin(x/3.)
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Combining a pm3d with a Mesh Surface
You can draw any number of possibly intersecting surfaces of different types in gnuplot,
but you must take care to apply the right settings to cause them to be rendered correctly.
We’ll show how to do that with pm3d surfaces below. Here is an example of a mesh
surface intersecting a pm3d surface. You must apply the hidden3d front setting for
this type of plot, or the surfaces will not be drawn correctly. Leaving hidden3d unset, or
doing set hidd without the front setting, will probably not be sufficient. If you want
to be able to see the mesh surface through the pm3d surface, you must turn hidden line
drawing off with unset hidd (the default), as well as setting a transparent fill. A mesh
surface drawn with hidden line removal can not be seen through any pm3d surface.

set iso 50

set hidd front

set xr [-1 : 1]

set yr [-1 : 1]

splot (exp(-(x**2 + y**2)*3)) with pm3d,\

(x**2+y**2) with lines


set iso 50
set hidd front
set xr [-1 : 1]
set yr [-1 : 1]
splot (exp(-(x**2 + y**2)*3)) with pm3d,\
  (x**2+y**2) with lines



Lee Phillips: Gnuplot 5 2nd ed. 3D Surfaces 164

Lighting
You can add a simulation of directional lighting to your surfaces, which makes their
shape more apparent to the eye. The gnuplot command set pm3d lighting primary

A specular B adds the lighting effect, with A and B both numbers from 0 to 1, giving
the fractional intensity of each component. The primary light is a diffuse, directional
illumination, while the specular component supplies shiny highlights. You usually need to
experiment to find the best values for a particular surface. Here we’ve used the animation
procedure from the previous chapter to make a movie of a surface rotating in 3D. This
kind of animation is very effective at making the shape of a solid object clear, especially
when combined with directional lighting. As before, you must stitch the generated frames
together using Imagemagick or another program that can make movies out of a sequence
of images.

set term pngcairo

unset key

set cbr[-60:100]

set yr [0:10]; set xr [0:10]

set iso 100

set pm3d lighting primary .2 specular .5

do for [i = 1:200] {

set view 35, 360.*i/200

set out gprintf("frame%03.0f.png", i)

splot besj0(y)*x**2 with pm3d }

set out

Click or double-click the image to open, or go here.


set term pngcairo
unset key
set cbr[-60:100]
set yr [0:10]; set xr [0:10]
set iso 100
set pm3d lighting primary .2 specular .5
do for [i = 1:200] {
  set view 35, 360.*i/200
  set out  gprintf("frame%03.0f.png", i)
  splot besj0(y)*x**2 with pm3d }
set out
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Parametric Plots in 3D: Paths in Space
We can make parametric plots in 3D as well as in 2D. In 3D there are two types: if we
use one parameter, we get a curve drawn in the 3D space, while if we use two, we get a
surface, as we’ll see in the next section. It is more difficult to mentally visualize the results
of a parametric plot command than the ones we’ve seen up to now; you must imagine the
parameter[s] increasing, and what happens to the x and y coordinates. Here’s an example
of a cone-shaped helix:

unset key

set parametric

set samp 1000

set view 60, 45

set urange [0 : 10]

splot u*cos(10*u), u*sin(10*u), u lw 3


unset key
set parametric
set samp 1000
set view 60, 45
set urange [0 : 10]
splot u*cos(10*u), u*sin(10*u), u lw 3
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Parametric Plots in 3D: Surfaces
Using two parameters, we can draw all manner of complex shapes in 3D. As we’ve
mentioned, it can be difficult to understand how a given expression leads to the shape you
see on the screen; but if you imagine one parameter held fixed while the other evolves,
and the path that would be traced out in space, and do this for a succession of fixed values
of the first parameter, you may achieve enlightenment. In the splot command below,
the parameters are u and v, and the three expressions are the x, y, and z components of
the surface, which slices through itself in 3D. The resolution of parametric surface plots
depends on the samples settings, and only the first number is used. The set isolines

settings has no effect on the surface, but does have a side effect on auto-generation of
ticks and axes ranges. Similar considerations apply to the parametric lines in 3D of the
previous section. The depthorder setting does for pm3d surfaces what hidden3d does
for mesh surfaces, and is absolutely necessary for correct rendering of any complicated
pm3d plot.

unset key

set parametric

set pm3d depthorder

set samp 100

unset border

set view 45, 80

unset xtics; unset ytics; unset ztics

set urange [-pi:pi]

set vrange [-pi:pi]

splot cos(u)*cos(v), sin(u)*cos(v), sin(u) with pm3d


unset key
set parametric
set pm3d depthorder
set samp 100
unset border
set view 45, 80
unset xtics; unset ytics; unset ztics
set urange [-pi:pi]
set vrange [-pi:pi]
splot cos(u)*cos(v), sin(u)*cos(v), sin(u) with pm3d
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Transparent pm3d Surfaces
The colored surfaces created by the pm3d style are normally opaque, regardless of the
hidden3d setting. But the facet coloring follows the global fill setting; therefore the
pm3d surface can be rendered translucent, which can help in the visualization of complex
shapes. Note that the depthorder option is not compatible with the transparent fill
option, but you can influence the order in which the surface components are drawn: try
help pm3d scan.

unset key

set parametric

set style fill transparent solid .5

set samp 100

unset border

set view 45, 80

unset xtics; unset ytics; unset ztics

set urange [-pi:pi]

set vrange [-pi:pi]

splot cos(u)*cos(v), sin(u)*cos(v), sin(u) with pm3d


unset key
set parametric
set style fill transparent solid .5
set samp 100
unset border
set view 45, 80
unset xtics; unset ytics; unset ztics
set urange [-pi:pi]
set vrange [-pi:pi]
splot cos(u)*cos(v), sin(u)*cos(v), sin(u) with pm3d
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Plot Borders in 3D
We know how to control which of the four possible border lines are drawn for a 2D plot.
In 3D, there are 12 border lines to choose from, and each one can be turned on or off
at will. Here is the table of 12 magic numbers; for each border that you desire, add the
corresponding number to the total, and supply the result to the set border command.
The default is equivalent to 31, which, as you’ve seen, gives you all four lines at the base
and one “left vertical” line. The example in the next section adds up all the numbers for a
complete box around the plot.

1 bottom left front

2 bottom left back

4 bottom right front

8 bottom right back

16 left vertical

32 back vertical

64 right vertical

128 front vertical

256 top left back

512 top right back

1024 top left front

2048 top right front
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Coordinate Mapping
Gnuplot does not offer polar (cylindrical, spherical) coordinate systems in 3D when
plotting functions, but when plotting data, either from a file or using the “++” special
filename, the columns can bemapped to a cylindrical (θ, z, r) or spherical (θ, φ, r) coordinate
system. Angles are in radians unless set otherwise (set angle degrees), and, if the
third column is omitted, r = 1. Here is a plot of two concentric cones. Their colors
are taken from a fourth column supplied with the u command; since the palette will
be rescaled to cover the range of z values, any two values could be used in the fourth
columns, and the endpoints of the defined palette would be selected. We’ve used different
ranges for the plot and the box, as explain above.

set mapping cylindrical

set iso 100

set ur [-pi : pi]

set vr [-pi : pi]

set xr [-1.5*pi : 1.5*pi]

set yr [-1.5*pi : 1.5*pi]

set zr [0 : 1]

set cbr [0 : 1]

set pm3d lighting primary .4 specular .6

set style fill transparent solid .2

set border 4095

unset colorbox; unset key

set pal def (0 "blue", 1 "red")

splot "++" u 1:2:($2):(0) w pm3d,\

"++" u 1:2:(2*$2):(1) w pm3d


set mapping cylindrical
set iso 100
set ur [-pi : pi]
set vr [-pi : pi]
set xr [-1.5*pi : 1.5*pi]
set yr [-1.5*pi : 1.5*pi]
set zr [0 : 1]
set cbr [0 : 1]
set pm3d lighting primary .4 specular .6
set style fill transparent solid .2
set border 4095
unset colorbox; unset key
set pal def (0 "blue", 1 "red")
splot "++" u 1:2:($2):(0) w pm3d,\
   "++" u 1:2:(2*$2):(1) w pm3d
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The Bottom of the Box
The floor, or x-y plane, in 3D plots can be positioned at will. You may have noticed that
it is placed, by default, somewhat below the smallest z-value, which usually helps with
viewing these plots in perspective. But we often want to put it somewhere else, and that
somewhere else is often (but not always) at, or very close to, the minimum z-value. This
script repeats the previous plot, but with the floor of the box touching the point of the
cone. The new command that does this is highlighted. This example also shows how to
get pm3d surfaces with a single color.

set mapping cylindrical

set iso 100

set ur [-pi : pi]

set vr [-pi : pi]

set xr [-1.5*pi : 1.5*pi]

set yr [-1.5*pi : 1.5*pi]

set zr [0 : 1]

set style fill transparent solid .2

set border 4095

unset colorbox; unset key

set xyplane at 0

set view 77, 38

splot "++" u 1:2:($2) w pm3d fc "blue"


set mapping cylindrical
set iso 100
set ur [-pi : pi]
set vr [-pi : pi]
set xr [-1.5*pi : 1.5*pi]
set yr [-1.5*pi : 1.5*pi]
set zr [0 : 1]
set style fill transparent solid .2
set border 4095
unset colorbox; unset key
set xyplane at 0
set view 77, 38
splot "++" u 1:2:($2) w pm3d fc "blue"
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Grids in 3D
None of the 3D plots in this chapter have grids. Unlike 2D in gnuplot, that is the default.
Here we repeat the previous plot, showing how to turn on the grid. Without further
instructions, gnuplot puts the grid on the x-y plane only.

set mapping cylindrical

set iso 100

set ur [-pi : pi]

set vr [-pi : pi]

set zr [0 : 1]

set style fill transparent solid .2

set border 4095

set grid lt -1 lc "#339999"

unset colorbox; unset key

set xlabel "x"

set ylabel "y"

set zlabel "z"

set xyplane at 0

set view 77, 38

splot "++" u 1:2:($2) w pm3d fc "blue"


set mapping cylindrical
set iso 100
set ur [-pi : pi]
set vr [-pi : pi]
set zr [0 : 1]
set style fill transparent solid .2
set border 4095
set grid lt -1 lc "#339999"
unset colorbox; unset key
set xlabel "x"
set ylabel "y"
set zlabel "z"
set xyplane at 0
set view 77, 38
splot "++" u 1:2:($2) w pm3d fc "blue"
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Grid Control in 3D

Gnuplot allows us complete control of which gridlines appear on what planes. The default, as we saw above, are x- and y-
grids on the z-y plane, and nowhere else. Any more specific grid command replaces this default with what we ask for. If we
say set grid ztics, we get gridlines on the vertical planes, because that is where the z values change. The command (only
in 3D, and new in v. 5.4) set grid vertical extends any x- or y- gridlines that you have asked for onto the vertical planes;
without this command, they are drawn on the bottom plane only. Here are some examples, which repeat the previous plot,
but with all the grid commands used displayed as a title. To get these results, you will need to reset or say unset grid

between plots, as some of the grid commands add gridlines to previous commands.

°

°

°
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Walls
The set walls command will create solid walls for 3D plots at x, y, and z = 0 with, by
default, opacity = 1/2. Walls work best if you also change the default position of the
bottom plane.

set mapping cylindrical

set walls

set xyplane at 0

set iso 100

set ur [-pi : pi]

set vr [-pi : pi]

set zr [0 : 1]

set style fill transparent solid .2

set border 4095

unset colorbox; unset key

unset xtics; unset ytics; unset ztics

splot "++" u 1:2:($2) w pm3d fc "blue"


set mapping cylindrical
set walls
set xyplane at 0
set iso 100
set ur [-pi : pi]
set vr [-pi : pi]
set zr [0 : 1]
set style fill transparent solid .2
set border 4095
unset colorbox; unset key
unset xtics; unset ytics; unset ztics
splot "++" u 1:2:($2) w pm3d fc "blue"
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If you want more detailed control, you can set the characteristics of the three individual
walls. Sample commands for each wall are highlighted in the following script.

set mapping cylindrical

set wall z0 fillstyle solid fc "green"

set wall x0 fillstyle transparent solid 0.3 fc "blue"

set wall y0 fillstyle transparent solid 0.3 fc "red"

set xlab "x"

set ylab "y"

set xyplane at 0

set iso 100

set ur [-pi : pi]

set vr [-pi : pi]

set zr [0 : 1]

set style fill transparent solid .3

set border 4095

unset colorbox; unset key

unset xtics; unset ytics; unset ztics

splot "++" u 1:2:($2) w pm3d fc "blue"


set mapping cylindrical
set wall z0 fillstyle solid fc "green"
set wall x0 fillstyle transparent solid 0.3 fc "blue"
set wall y0 fillstyle transparent solid 0.3 fc "red"
set xlab "x"
set ylab "y"
set xyplane at 0
set iso 100
set ur [-pi : pi]
set vr [-pi : pi]
set zr [0 : 1]
set style fill transparent solid .3
set border 4095
unset colorbox; unset key
unset xtics; unset ytics; unset ztics
splot "++" u 1:2:($2) w pm3d fc "blue"



Lee Phillips: Gnuplot 5 2nd ed. 3D Surfaces 176

4D Plots
If we use the color and height of the surface to represent different quantities, then we have
what is essentially a 4-dimensional plot: two dependent and two independent variables.
One common use for such plots is to visualize functions of a complex variable. The
gnuplot syntax for complex numbers is {a, b}, which means a + ib, where i2 = -1. The
gnuplot functions real, imag, and abs all do what you would expect when supplied with
a complex argument. One common way to visualize complex functions is to represent
their magnitude as the height of a surface, with the surface colored to show the phase
angle of the function value in the complex plane. Here is an example that uses this type
of plot to display the sine function of a complex argument. This example also shows how
to position and size the colorbox, and how to give it a title, which can take an offset just
like axis labels.

set view 45,120

unset key

set iso 100

set xr [-2*pi : 2*pi]

set yr [-pi : pi]

set xlab "x"

set ylab "y"

set title "Sine(x + iy)" font "Courier,20"

set colorbox horiz user origin .58,.78 size .35,.03

set cblab "Phase angle" font "Courier, 18" offset 0, 4.2

f(x,y) = sin(x + y*{0,1})

set pal def (0 "blue", .5 "red", .5 "green", 1 "orange")

splot "++" u 1:2:(abs(f($1,$2))):\

(atan(real(f($1,$2))/imag(f($1,$2)))) with pm3d


set view 45,120
unset key
set iso 100
set xr [-2*pi : 2*pi]
set yr [-pi : pi]
set xlab "x"
set ylab "y"
set title "Sine(x + iy)" font "Courier,20"
set colorbox horiz user origin .58,.78 size .35,.03
set cblab "Phase angle" font "Courier, 18" offset 0, 4.2
f(x,y) = sin(x + y*{0,1})
set pal def (0 "blue", .5 "red", .5 "green", 1 "orange")
splot "++" u 1:2:(abs(f($1,$2))):\
   (atan(real(f($1,$2))/imag(f($1,$2)))) with pm3d
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Settings for Surfaces

Now that we’ve seen examples of gnuplot’s different types of surfaces, we’ll pause here to explain the effects of the various
settings on what gnuplot actually does. This is not always clear from the official documentation or the help system. If you
use the examples in this book as starting points, you’ll be able to get the effect you want with the usual modification of the
scripts; nevertheless, it can be useful to understand, more systematically, what the various options do, and that’s what this
section is all about.

The basic mesh surface, a wireframe that you can see through, is produced with the splot command with no other
options. The number of “wires”, or isolines, is controlled by the set iso command, and the number of samples along each
isoline is controlled by set samples. If the values for samples and isolines are very different the results can appear odd.

When you splot after turning on hidden line removal with set hidden3d, a different plotting algorithm is used. Now
set samples has no effect; the surface resolution is determined only by the number of isolines. Without hidden line removal
(unset hidd or the default), when plotting functions, the function value is calculated at each sample point along the isolines;
but with hidden3d on, it is calculated at each isoline intersection; consequently, at low resolutions the surfaces generated
with andwithout hidden line removal can have a somewhat different shape. This is another reason it may bewise to routinely
set the isoline and sampling resolution to the same values.

When you splot ... with pm3d, isolines are drawn similarly (but not identically) as when you omit the with pm3d

phrase: this means that the isolines are influenced by the hidden3d setting. Then each facet of the surface, the small areas
bounded by the isolines, is colored according to the average of the values at its bounding isoline intersections. Whether
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you can see through this surface or not depends on the fill setting, as we just saw, and not on the hidden3d setting. But
that setting does affect the appearance of the pm3d surface if the values set by set isolines and set samples are not
equal. (The online help claims that the hidden3d setting has no effect upon pm3d surfaces, but this is just in regard to their
apparent opacity.) If the surface is at all complex, you must execute set pm3d depthorder; failing to set this will result in
incorrect surfaces, especially with intricate parametric plots.

You will encounter many examples, in the official demos, on websites, and even this author’s previous gnuplot book,
where a script will say set pm3d, making a global setting to use pm3d surfaces for all splot commands. Other versions are
set pm3d on s, or set pm3d on sb, to draw pm3d surfaces on the surface, or on both the surface and the bottom (we’ll
see what this is for in a later chapter). With this setting made, you merely have to say splot ... to create a pm3d surface,
without having to add with pm3d. These commands put gnuplot in “pm3d implicit” mode, where pm3d will be activated
for all surfaces. However, in this case the splot command also plots isolines along with the pm3d surface, as if you had
commanded plot f(x,y) w pm3d, f(x,y) w lines. Sometimes this doesn’t matter. But, as we said above, the isolines
for the two styles of surface drawing do not exactly coincide; this means that there may be weird artifacts, especially in areas
with large curvature, where there are gaps between the two surfaces.

The figure shows a typical example; it was created with set pm3d followed by a simple
splot command. To avoid these problems and others, avoid putting pm3d in implicit mode,
by never saying set pm3d at s, etc. You can make other pm3d settings, such as set pm3d

border ..., which leaves pm3d in explicit mode. In this way you can freely mix differ-
ent styles of surface by using different styles (splot f(x,y) with pm3d, g(x,y) with
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lines) without any surprises. (Actually, you can avoid surprises if you’re careful to always
specify with pm3d or with lines; the danger of plotting multiple surfaces only crops up
when you omit the style specifier.)

(There is another flag called surface that is on by default: it tells gnuplot to actually draw a surface when executing a
splot command; at times we might need to say unset surface, as we’ll see in later chapters. But here is another example
of how combinations of settings can lead to surprises when putting pm3d in implicit mode: After unset surface and set

pm3d (making pm3d implicit), a splot command shows the axes through the surface if hidden3d is turned on, but not if it is
turned off.)
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Axis Labels in 3D
The default treatment of axis labels when using splot is to print them horizontally,
which takes up a lot of space, and is not usually what you want:

unset key; unset colorbox

set border 4095

set lmargin 9

set xlab "The x-axis"

set ylab "The y-axis"

set zlab "The z-axis" offset -3

set samp 200; set iso 200

set zr [-2 : 2]

set xr [-5 : 5]

set yr [-5 : 5]

set map spher

splot "++" u 1:2 w pm3d


unset key; unset colorbox
set border 4095
set lmargin 9
set xlab "The x-axis" 
set ylab "The y-axis"
set zlab "The z-axis" offset -3
set samp 200; set iso 200
set zr [-2 : 2]
set xr [-5 : 5]
set yr [-5 : 5]
set map spher
splot "++" u 1:2 w pm3d
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Gnuplot offers a convenience to help with this, in the form of a keyword that can only be
used for axis labels when using splot. This is highlighted below:

unset key; unset colorbox

set border 4095

set lmargin 9

set xlab "The x-axis" rot parallel

set ylab "The y-axis" rot parallel

set zlab "The z-axis" rot parallel

#set grid ztics lt 3

#set grid ytics

set samp 200

set iso 200

set zr [-2 : 2]

set xr [-5 : 5]

set yr [-5 : 5]

set map spher

splot "++" u 1:2 w pm3d


unset key; unset colorbox
set border 4095
set lmargin 9
set xlab "The x-axis" rot parallel
set ylab "The y-axis" rot parallel
set zlab "The z-axis" rot parallel
#set grid ztics lt 3
#set grid ytics
set samp 200
set iso 200
set zr [-2 : 2]
set xr [-5 : 5]
set yr [-5 : 5]
set map spher
splot "++" u 1:2 w pm3d
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Contour Plots and Heat Maps
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This chapter, as the previous one, deals with three- (or more) dimensional data and functions. The difference is in the
way the information is visualized. Instead of a 2D rendition of a 3D surface, the plots you will learn how to make now use
color, symbols, curves and labels to visualize the data or functional relationship as a plane (flat) figure. Most of these types
of graphs are probably familiar to you. If you take some of the colored surface plots from the last chapter and remove the
surface information, leaving the color only, and view the plots from above, you will have what is sometimes called a heat
map, where the value is indicated simply by color. A contour plot traces value by drawing curves, just as in the topographical
maps familiar to hikers. The two types can, of course be combined in various ways. You can also create a type of 4D plot,
called a vector plot, that draws arrows or similar symbols to show the x and y components of a velocity field or something
similar. Finally, any of the types of plots introduced in this chapter can be combined with the surface plots of the previous
chapter — you can even embed vectors in surfaces.
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Heat Maps
You make heat maps by invoking the pm3d style, just as when you make the colored
surface maps of the previous chapter — and all the same options for color palettes are
available. The difference is that you want to display a “bird’s eye” view of the plot, by
setting the view angles correctly. Gnuplot has a shortcut for this: just say set view map.

set xrange [-4:4]

set yrange [-4:4]

set iso 200

set samp 200

unset key

set palette cubehelix start 1.2 cycles -1. saturation 1

set view map

splot sin(y**2+x**2) - cos(x**2) with pm3d


set xrange [-4:4]
set yrange [-4:4]
set iso 200
set samp 200
unset key
set palette cubehelix start 1.2 cycles -1. saturation 1
set view map
splot sin(y**2+x**2) - cos(x**2) with pm3d
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Contour Plots
This example shows how to make a basic contour plot without contour labels. We’ll leave
the selection of contour lines up to gnuplot, and let it draw a key, which will identify the
contour values using color. In order to compare methods, we’ll plot the same function
in all the examples in this part of the chapter. The highlighted command tell gnuplot to
draw contours on the base, which refers to the bottom of the plotting box. The other
locations for these purposes are the surface, referring to the plotted surface, if there is
one, and both. We’ll see examples of all the possibilities later in the chapter. We need to
turn off the surface, since we just want contours; if we don’t do this, gnuplot will draw
the surface isolines as well, which we don’t want. The isoline and samples settings have
a similar effect in contour plots as when plotting surfaces.

set xrange [-4:4]

set yrange [-4:4]

set iso 200

set samp 200

set key rmargin

unset surf

set contour base

set view map

splot sin(y**2+x**2) - cos(x**2) title "F(x,y)"


set xrange [-4:4]
set yrange [-4:4]
set iso 200
set samp 200
set key rmargin
unset surf
set contour base
set view map
splot sin(y**2+x**2) - cos(x**2) title "F(x,y)"
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We can exert some influence over the number of contours that gnuplot draws with the
highlighted command in the script below. Note that this command doesn’t get you the
exact number of contour lines that you ask for in most cases; gnuplot will choose a
number that gives simple labels (type help set cntrparam for all the details). This is a
good command to use if you need more or fewer contour lines than the default, but want
to keep the plot neat and simple.

set xrange [-4:4]

set yrange [-4:4]

set iso 200

set samp 200

set key rmargin

unset surf

set contour base

set cntrparam levels auto 9

set view map

splot sin(y**2+x**2) - cos(x**2) title ""


set xrange [-4:4]
set yrange [-4:4]
set iso 200
set samp 200
set key rmargin
unset surf
set contour base
set cntrparam levels auto 9
set view map
splot sin(y**2+x**2) - cos(x**2) title ""
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For more control over contour levels, try the command in this script. The three numbers
in the command are the beginning value, the increment, and the ending value. We’ve
chosen values to highlight the nodal areas of the function (where it is near zero).

set xrange [-4:4]

set yrange [-4:4]

set iso 200

set samp 200

set key rmargin

unset surf

set contour base

set cntrparam levels incremental -.2, .05, .2

set view map

splot sin(y**2+x**2) - cos(x**2) title ""


set xrange [-4:4]
set yrange [-4:4]
set iso 200
set samp 200
set key rmargin
unset surf
set contour base
set cntrparam levels incremental -.2, .05, .2
set view map
splot sin(y**2+x**2) - cos(x**2) title ""
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Custom Contours
A new feature in v.5.4 is the ability to choose particular linetypes for certain contour
levels. This is implemented as an extension to the cntrparam setting. The highlighted
command in this script tells gnuplot to begin cycling through the line types starting at lt
10, and to go in increasing order (sorted). The three custom lts will set the style of the
minimum, zero, and maximum levels.

set xrange [-4:4]

set yrange [-4:4]

set iso 200

set samp 200

set key rmargin

unset surf

set contour base

set view map

set lt 10 lw 5 lc "blue"

set lt 15 lc "black" dt "-"

set lt 20 lw 5 lc "red"

set cntrparam levels incremental -1, .2, 1

set cntrparam first 10 sort

splot sin(y**2+x**2) - cos(x**2) title ""


set xrange [-4:4]
set yrange [-4:4]
set iso 200
set samp 200
set key rmargin
unset surf
set contour base
set view map
set lt 10 lw 5 lc "blue"
set lt 15 lc "black" dt "-"
set lt 20 lw 5 lc "red"
set cntrparam levels incremental -1, .2, 1
set cntrparam first 10 sort
splot sin(y**2+x**2) - cos(x**2) title ""
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Finally, you can choose particular values to use for contour levels, as shown here:

set xrange [-4:4]

set yrange [-4:4]

set iso 200

set samp 200

set key rmargin

unset surf

set contour base

set cntrparam levels discrete 1, -1

set view map

splot sin(y**2+x**2) - cos(x**2) title ""


set xrange [-4:4]
set yrange [-4:4]
set iso 200
set samp 200
set key rmargin
unset surf
set contour base
set cntrparam levels discrete 1, -1
set view map
splot sin(y**2+x**2) - cos(x**2) title "" 
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Labeled Contours
Contour plots are generally easier to read if they have numerical labels on the contour
lines, rather than in a legend (but this depends on the details of your particular plot).
Gnuplot’s command for labeling contour lines is set cntrlabel; when you use it, it
makes sense to turn off the legend, but you can have both if you really want to. Contours
are made up of a large number of short line segments. The cntrlabel setting parameters
control how many labels are put on each contour line, and where on the line they start:
the first number is which segment of each line they start on, and the second number
is the number of segments between labels. After those two parameters, you can add
formatting commands, as we do below to select a font size. Getting the labels on the
contours requires a double plot command: one to draw the lines and one to apply the text,
using the with labels style command. In order to illustrate contour labeling options,
we’ll plot a simpler function:

set xrange [-4:4]

set yrange [-4:4]

set iso 200

set samp 200

unset key

unset surf

set contour base

set view map

set cntrparam levels auto 9

set cntrlabel start 1 interval 25 font ",11"

f(x,y) = sqrt(x**2 + y**2)

splot f(x,y), f(x,y) with labels


set xrange [-4:4]
set yrange [-4:4]
set iso 200
set samp 200
unset key
unset surf
set contour base
set view map
set cntrparam levels auto 9
set cntrlabel start 1 interval 25 font ",11"
f(x,y) = sqrt(x**2 + y**2)
splot f(x,y), f(x,y) with labels
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If we make the isolines and samples settings very small, so that we can easily see the
individual line segments making up the contour lines, we can more clearly see the effects
of the cntrlabel command parameters. Here is the previous plot with a label at every
other line segment:

set xrange [-4:4]

set yrange [-4:4]

set iso 5

set samp 5

unset key

unset surf

set contour base

set view map

set cntrparam levels auto 9

set cntrlabel start 1 interval 2 font "Courier,11"

f(x,y) = sqrt(x**2 + y**2)

splot f(x,y), f(x,y) with labels


set xrange [-4:4]
set yrange [-4:4]
set iso 5
set samp 5
unset key
unset surf
set contour base
set view map
set cntrparam levels auto 9
set cntrlabel start 1 interval 2 font "Courier,11"
f(x,y) = sqrt(x**2 + y**2)
splot f(x,y), f(x,y) with labels
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And here is the same thing, but starting at a different segment:

set xrange [-4:4]

set yrange [-4:4]

set iso 5

set samp 5

unset key

unset surf

set contour base

set view map

set cntrparam levels auto 9

set cntrlabel start 2 interval 2 font "Courier,11"

f(x,y) = sqrt(x**2 + y**2)

splot f(x,y), f(x,y) with labels


set xrange [-4:4]
set yrange [-4:4]
set iso 5
set samp 5
unset key
unset surf
set contour base
set view map
set cntrparam levels auto 9
set cntrlabel start 2 interval 2 font "Courier,11"
f(x,y) = sqrt(x**2 + y**2)
splot f(x,y), f(x,y) with labels
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Vector Plots
When the quantity that depends on x and y has both a magnitude and a direction it can
be represented by an arrow whose length is proportional to the magnitude. If we divide
the x-y plane into a grid and draw an arrow at each grid point representing the direction
and magnitude at that point, we have a vector plot. As we are associating two quantities,
the magnitude and direction (or, equivalently, Δx and Δy) for each value of x and y, we
can think of this type of visualization as a 4D plot. Vector plots are used for representing
fluid flows, electric fields, and many other physical systems.

Vector plots require a data file or the the equivalent pseudofile syntax. Four columns are
used for x, y, Δx, and Δy, respectively. We can set the size of the arrowheads, whether
they are filled or open, and the angle of the sides of the arrowheads in degrees. The
example here uses filled arrowheads of a medium size with a 15° angle. For more details
on how to customize the arrow style, type help arrowstyle.

This plot represents a rotating flow field.

set xrange [0:pi]

set yrange [0:pi]

set iso 20

set samp 20

unset key

a = .2

plot "++" using 1:2:(-a*sin($1)*cos($2)):(a*cos($1)*sin($2))\

with vectors size .06, 15 filled


set xrange [0:pi]
set yrange [0:pi]
set iso 20
set samp 20
unset key
a = .2
plot "++" using 1:2:(-a*sin($1)*cos($2)):(a*cos($1)*sin($2))\
          with vectors size .06, 15 filled
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Vectors on a Surface
Gnuplot can also render a vector field on a surface rather than merely on a plane. You
can use this to represent, for example, 3D flow fields. As in the previous case, you need
to use either datafile plotting or the “++” pseudofile. The first three columns define the
surface, as when creating the surface plots of the last chapter, but the surface itself is not
rendered. The last three columns represent Δx, Δy, and Δz. The following example is the
same rotating flow as in the previous example, with the difference that the vectors lie on
a surface given by the cosine of the squared distance from the origin.

set xr [-1:1]; set yr[-1:1]

set view 50, 340

set iso 20; set samp 20

unset key

a = .2

splot "++" u 1:2:(cos($1**2+$2**2)):(-a*sin($1)*cos($2)):\

(a*cos($1)*sin($2)):(0) w vec size .02, 15 filled


set xr [-1:1]; set yr[-1:1]
set view 50, 340
set iso 20; set samp 20
unset key
a = .2
splot "++" u 1:2:(cos($1**2+$2**2)):(-a*sin($1)*cos($2)):\
             (a*cos($1)*sin($2)):(0) w vec size .02, 15 filled
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You can also render the surface in which the vectors are embedded. We do that here with
a pm3d surface, which comes first in the plot command so that the arrows are plotted on
top of it. In addition, we set the linecolor of the vectors to contrast with the coloring
of the surface.

set xr [-1:1]; set yr[-1:1]

set view 50, 340

set iso 20; set samp 20

unset key

a = .2

splot "++" u 1:2:(cos($1**2+$2**2)) with pm3d,\

"++" u 1:2:(cos($1**2+$2**2)):(-a*sin($1)*cos($2)):\

(a*cos($1)*sin($2)):\

(0) w vec size .02, 15 filled lc black


set xr [-1:1]; set yr[-1:1]
set view 50, 340
set iso 20; set samp 20
unset key
a = .2
splot "++" u 1:2:(cos($1**2+$2**2)) with pm3d,\
      "++" u 1:2:(cos($1**2+$2**2)):(-a*sin($1)*cos($2)):\
             (a*cos($1)*sin($2)):\
             (0) w vec size .02, 15 filled lc black
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Combining Contour Plots and Heat Maps
You can put a contour plot and a heat map on the same graph. Why would you want to
do such a thing? Sometimes people like to add contours to a heat map in order to allow
the viewer to easily read off particular values; to show the data more precisely. Another
reason is to visualize two related but different sets of data on the same graph. In the case
of 2D plots, doing this is simple: we just plot any number of curves and identify them
with labels or a legend. But with 3D plots, trying to interpret a graph containing two
different sets of contours would be difficult, and plotting two heat maps simultaneously
would be impossible. However, rendering one function or dataset as a heat map and
the other one as a set of contours can work quite well. In this example, we exploit the
optional fourth column of the splot command to define the colors for the heat map;
the contours are taken from the third column. This requires us to use the “data” version
of the splot command, through the “++” pseudofile. The colorbar gives the mapping
from color to z-value, as usual, and we add some labels to identify the contours; this we
can do using the “function” version of the splot command, as no columns are required.
The highlighted word onecolor, which is an option to the cntrlabel command, tells
gnuplot to plot all the contours the same color; the other highlighted bit, the linewidth
and linetype specifiers, set the properties of the contours, allowing them to stand out
against the colored background.

set xrange [0:pi]; set yrange [0:pi]; set iso 100; set samp 100

set cntrparam levels auto 10; set contour base

unset key; set view map

set cbr [-1 : 1]

set cntrlabel start 1 interval 25 font "Courier,14" onecolor

splot "++" using 1:2:($1**2-$2**2):(sin($1**2+$2**2)) with pm3d lt -1 lw 2,\

x**2 - y**2 with labels


set xrange [0:pi]; set yrange [0:pi]; set iso 100; set samp 100
set cntrparam levels auto 10; set contour base
unset key; set view map
set cbr [-1 : 1]
set cntrlabel start 1 interval 25 font "Courier,14" onecolor
splot "++" using 1:2:($1**2-$2**2):(sin($1**2+$2**2)) with pm3d lt -1 lw 2,\
           x**2 - y**2 with labels 
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Contours with Surfaces
The command we used before to get contour plots, set contour base, suggests that
there are other options. One of these is to put the contours on the surface. If you plot a
mesh surface this way, you should draw the isolines in a light color, as we’ve done below,
so that the contour lines are easy to see.

set xrange [0:pi]; set yrange [0:pi]

set iso 50; set samp 50

set ztics 0.2

set cntrparam levels auto 9

set key maxrow 3 bmargin

set contour surface

set view 43, 38

set hidden

splot cos(sqrt(x**2 + y**2))**2 lc "grey80" title ""


set xrange [0:pi]; set yrange [0:pi]
set iso 50; set samp 50
set ztics 0.2
set cntrparam levels auto 9
set key maxrow 3 bmargin
set contour surface
set view 43, 38
set hidden
splot cos(sqrt(x**2 + y**2))**2 lc "grey80" title ""
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You can also display the contour lines on the base and surface at the same time (as well
as only on the base when drawing a surface). Let’s replot the previous example with
contours on the surface and base, with labels (which are only drawn on the base).

set xrange [0:pi]; set yrange [0:pi]

set iso 50; set samp 50

set ztics 0.2

set cntrparam levels auto 5

set contour both

set cntrlabel start 5 interval 55 font "Courier,7"

set view 43, 38

unset key

set hidden

splot cos(sqrt(x**2 + y**2))**2 lc "grey80",\

cos(sqrt(x**2 + y**2))**2 with labels


set xrange [0:pi]; set yrange [0:pi]
set iso 50; set samp 50
set ztics 0.2
set cntrparam levels auto 5
set contour both
set cntrlabel start 5 interval 55 font "Courier,7"
set view 43, 38
unset key
set hidden
splot cos(sqrt(x**2 + y**2))**2 lc "grey80",\
      cos(sqrt(x**2 + y**2))**2 with labels
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Heat Maps with Surfaces
Just as we can combine contour and surface plots, we can plot surfaces along with heat
maps. We’ll stick with the function we’ve been using in the last few examples:

set xrange [0:pi]; set yrange [0:pi]

set iso 50; set samp 50

set ztics 0.2

set view 43, 230

set pal def (0 "slateblue1", .5 "coral", 1 "seagreen")

unset key

set hidden front

splot cos(sqrt(x**2 + y**2))**2 lc "black",\

cos(sqrt(x**2 + y**2))**2 with pm3d at b


set xrange [0:pi]; set yrange [0:pi]
set iso 50; set samp 50
set ztics 0.2
set view 43, 230
set pal def (0 "slateblue1", .5 "coral", 1 "seagreen")
unset key
set hidden front
splot cos(sqrt(x**2 + y**2))**2 lc "black",\
      cos(sqrt(x**2 + y**2))**2 with pm3d at b
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Intersecting Surfaces and Heat Maps
In all of our 3D plots so far, in this chapter and the previous one, we have allowed gnuplot
to position the “base” of the plot in its default location, which is below the plotted surface.
This is usually what you want. However, you can put the base, called the “xyplane” in
gnuplot, anywhere you want. As before, set hidden front is essential to get a correct
plot. Sometimes a good place for the xyplane is cutting right through the surface, as in
this example:

set xrange [0:pi]; set yrange [0:pi]

set iso 50; set samp 50

set ztics 0.2

set view 75, 237

set pal def (0 "slateblue1", .5 "coral", 1 "seagreen")

unset key

set hidden front

set xyplane at 0.6

splot cos(sqrt(x**2 + y**2))**2 lc "black",\

cos(sqrt(x**2 + y**2))**2 with pm3d at b


set xrange [0:pi]; set yrange [0:pi]
set iso 50; set samp 50
set ztics 0.2
set view 75, 237
set pal def (0 "slateblue1", .5 "coral", 1 "seagreen")
unset key
set hidden front
set xyplane at 0.6
splot cos(sqrt(x**2 + y**2))**2 lc "black",\
      cos(sqrt(x**2 + y**2))**2 with pm3d at b
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Of course, you can combine the elements in the previous example with contour lines, as
here (you can also draw contours on the surface, in combination with all of this):

set xrange [0:pi]; set yrange [0:pi]

set iso 50; set samp 50

set ztics 0.2

set view 55, 335

set pal def (0 "slateblue1", .5 "coral", 1 "seagreen")

unset key

set hidden front

set contour base

set xyplane at 0.2

splot cos(sqrt(x**2 + y**2))**2 lc "black",\

cos(sqrt(x**2 + y**2))**2 with pm3d at b


set xrange [0:pi]; set yrange [0:pi]
set iso 50; set samp 50
set ztics 0.2
set view 55, 335
set pal def (0 "slateblue1", .5 "coral", 1 "seagreen")
unset key
set hidden front
set contour base
set xyplane at 0.2
splot cos(sqrt(x**2 + y**2))**2 lc "black",\
      cos(sqrt(x**2 + y**2))**2 with pm3d at b
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This chapter is about tics in gnuplot. Tics are important: they are the things that connect the curves, colors, and surfaces
in your plots to actual numbers. The subject of “tics” includes not merely those little line segments dividing up the axes of
your plots, but the labels associated with them. In this chapter you will learn how to get complete control of the tics and
their labels: a somewhat tricky subject, it turns out. You’ll learn about some features of gnuplot that we’ve been saving for
this chapter, because they’re really part of tic creation: gnuplot’s handling of dates and times, and of latitude and longitude.
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Minor Tics
Here is a simple plot with a subtle feature that we haven’t seen before in any of our
examples. There are smaller (shorter) tic marks between the major, labeled tic marks.
These are called “minor tics”. Notice that the grid is aligned with the major tic marks.
As you might have guessed, the set mxtics command sets the minor tics on the x-axis
and set mytics creates minor tics on the y-axis. The number following the keyword
(mxtics or mytics) establishes the number of spaces between tics (not the actual number
of minor tics). The figure should make it clear how the commands work. The purpose
of minor tics is to make it easier to extract quantitative information from the graph by
facilitating interpolation between the numerically labeled values associated with the
major tic marks.

set grid lt -1

set mxtics 4

set mytics 2

set xr [0 : pi]

plot sin(4*x)*exp(-x/2) lw 2


set grid lt -1
set mxtics 4
set mytics 2
set xr [0 : pi]
plot sin(4*x)*exp(-x/2) lw 2
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…On a Second Axis
Way back in the first chapter we learned how to put an independent scale and associated
tic marks on a second axis. You can also set up minor tics on second axes, as in the
following example (there is also a command set mx2tics, for a second x-axis):

set grid

set mxtics 4

set mytics 2

set xr [0 : pi]

set ytics nomirror

set y2tics 0.4

set my2tics 4

plot 4*sin(4*x)*exp(-x/2), cos(8*x)*exp(x/2)


set grid
set mxtics 4
set mytics 2
set xr [0 : pi]
set ytics nomirror
set y2tics 0.4
set my2tics 4
plot 4*sin(4*x)*exp(-x/2), cos(8*x)*exp(x/2)
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Adjusting the Tic Size
The default length gnuplot uses for tics is a bit small, and makes the minor tics nearly
disappear on small plots. Naturally, the tic size can be adjusted to any size you like. The
following figure employs longer tic marks than in the previous examples; the number “3”
in the command will set the length of the major tics to be three times the default length,
which depends on the terminal in use:

set grid

set tics scale 3

set mxtics 4

set mytics 2

set xr [0 : pi]

plot sin(4*x)*exp(-x/2)


set grid
set tics scale 3
set mxtics 4
set mytics 2
set xr [0 : pi]
plot sin(4*x)*exp(-x/2)
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…Of Minor Tics
By default, gnuplot assigns a length to the minor tics that is one-half the length of the
major tics, so in the previous example the minor tics have a scale of 1.5. If you want to
set a non-default scale for the minor tics, the command becomes set tics scale a, b,
where a is the scale for the major tics and b is the scale for the minor tics. You can even
make the minor tics longer than the major tics if, for some reason, you want to.

set grid

set tics scale 4, 3

set key at 2.5, 0.8

set mxtics 4

set mytics 2

set xr [0 : pi]

plot sin(4*x)*exp(-x/2)


set grid
set tics scale 4, 3
set key at 2.5, 0.8
set mxtics 4
set mytics 2
set xr [0 : pi]
plot sin(4*x)*exp(-x/2)
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Removing All The Tics
You can remove the tics entirely from the plot. This gives a simplified appearance
for situations where you need an illustration and the reader is not expected to glean
quantitative information from the graph.

unset tics

set xr [0 : pi]

plot sin(4*x)*exp(-x/2)


unset tics
set xr [0 : pi]
plot sin(4*x)*exp(-x/2)



Lee Phillips: Gnuplot 5 2nd ed. Tic Control 209

Making the Tics Stick Out
The following example illustrates another tic style available in gnuplot, where the tics
stick out of the plot rather than intrude on the interior of the graph. This style is useful
when the default tic marks might obscure your plot elements; for example, when part of
the curve lies close to an axis. You can apply it to only one axis (set xtics out), too.
You can also get the same effect by using negative numbers in the tic scaling command.

set tics out

set grid

set xr [-3 : 3]

set key at 0, 0.8

plot tanh(x) title "Hyperbolic tangent"


set tics out
set grid
set xr [-3 : 3]
set key at 0, 0.8
plot tanh(x) title "Hyperbolic tangent"
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Setting Tic Values
You can set the locations of a plot’s tics independently of the axes ranges, using the
command set xtics b, i, e, where “b” is the starting tic value, “i” is the increment
between tics, and “e” is the ending tic value (there are corresponding commands for the
tics on the other axes, of course). In this way you can focus the plot on a particular area,
where the reader may want to read off quantitative information. The grid lines, as before,
will track the major tics. A simpler version of the commands, for example, set xtics i,
just sets the increment, and allows gnuplot to set the beginning and ending values.

unset key

set samples 1000

set tics scale 3

set grid lt 1 lc "grey" lw .5

set xr [-30*pi : 30*pi]

set xtics -20, 10, 20

plot sin(x) * exp(-x**2/30)


unset key
set samples 1000
set tics scale 3
set grid lt 1 lc "grey" lw .5
set xr [-30*pi : 30*pi]
set xtics -20, 10, 20
plot sin(x) * exp(-x**2/30)
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Setting Tics Manually
Sometimes gnuplot’s automatic tic placement is not flexible enough and you need to take
complete control of the position of every tic mark, or you need to place custom labels
on the tics rather than rely on the automatically generated numerical labels. Gnuplot
will cooperate. Notice the tic labels and positions along the x-axis in the following plot.
The tics are aligned with the peaks and zero crossings of the sine wave, and are labeled
using π rather than an approximate decimal. This is the natural way to label the axis
when plotting this circular function. Gnuplot’s automatically chosen tic positions and
numerical labels would be placed at the positions 1, 2, 3, etc., and would have no particular
relation to the function we are plotting.

set xr [0 : 2*pi]

set grid lt 1 lc "grey" lw .5

set xtics\

("π" pi, "π/2" pi/2, "2π" 2*pi, "3π/2" 3*pi/2, "0" 0)

plot sin(x)


set xr [0 : 2*pi]
set grid lt 1 lc "grey" lw .5
set xtics\
  ("π" pi, "π/2" pi/2, "2π" 2*pi, "3π/2" 3*pi/2, "0" 0)
plot sin(x)
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Combining Automated and Manual Tics
You can supplement gnuplot’s automatic tics (either the fully automatic ones or the ones
set using the set xtics b, i, e command) with any number of manual tics using
the highlighted command in the script below. This is useful to call attention to a small
number of salient coordinate positions. Notice that the grid lines are drawn both on the
automatic tics and on the ones that you add.

In this example we’ve done something new: using the little-known ability of gnuplot to
use Unicode symbols in variable names, we’ve make the script easier to read by setting
“π” equal to pi, and using it in the following command setting the additional xtic values.

set xr [0 : 2*pi]

set grid lt 1 lc "grey" lw .5

π = pi

set xtics add\

("π" π, "π/2" π/2, "2π" 2*π, "3π/2" 3*π/2, "0" 0)

plot sin(x) lw 2


set xr [0 : 2*pi]
set grid lt 1 lc "grey" lw .5
π = pi
set xtics add\
  ("π" π, "π/2" π/2, "2π" 2*π, "3π/2" 3*π/2, "0" 0)
plot sin(x) lw 2 



Lee Phillips: Gnuplot 5 2nd ed. Tic Control 213

You can also set manual tics using set xtics add or just set xtics without using
labels. In this case gnuplot will put the tics where you tell it to, and use its default
numerical labels. You can mix and match these types of tics at will:

set xr [0 : 2*pi]

set grid lt 1 lc "grey" lw .5

set ytics (-.5, 0, .5, "Limit" .88)

set xtics add (1.618)

plot sin(x) lw 2


set xr [0 : 2*pi]
set grid lt 1 lc "grey" lw .5
set ytics (-.5, 0, .5, "Limit" .88)
set xtics add (1.618)
plot sin(x) lw 2 
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Formatting Tics
All of the options for string formatting that we learned about in Chapter 5 are available
for formatting tics. You can use all the familiar font specifiers, too. We’ll give an example
of that first. When making custom tic labels using the manual command here, gnuplot
does not take their width into account when setting plot margins. You will need to take
measures to ensure that they fit. Here, we are obliged to increase the left margin.

set xr [0 : 2*pi]

set lmargin 10

set grid lt 1 lc "grey" lw .5

set ytics (-.5, 0, .5, "Limit" .88) font "Courier, 20"

set xtics add (1.618) font "Helvetica, 7"

plot sin(x) lw 2


set xr [0 : 2*pi]
set lmargin 10
set grid lt 1 lc "grey" lw .5
set ytics (-.5, 0, .5, "Limit" .88) font "Courier, 20"
set xtics add (1.618) font "Helvetica, 7"
plot sin(x) lw 2 
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Here we’ll use another of gnuplot’s string formatting tricks to generate labels on the
x-axis at multiples of π automatically. The version of the set xtics command in the
third line sets the interval, and allows gnuplot to set the beginning and ending values.
We’ll also include some explanatory text, including an error estimate, within the tic labels
on the y-axis. The commands for applying format specifiers to tic labels are set format

x, set format y, etc. This example also shows how you can set the font of the tic labels
separately from their other properties. Note that when using a format, as we do below,
gnuplot has an idea of the width of the tic labels, and sets the margins appropriately itself.

set xr [0 : 2*pi]

set grid lt 1 lc "grey" lw .5

set xtics pi

set xtics font "Helvetica, 25"

set ytics font "Times, 18"

set format x "%.0Pπ"

set format y "%.2f ± .02 Amps"

plot sin(x) lw 2


set xr [0 : 2*pi]
set grid lt 1 lc "grey" lw .5
set xtics pi
set xtics font "Helvetica, 25"
set ytics font "Times, 18"
set format x "%.0Pπ"
set format y "%.2f ± .02 Amps"
plot sin(x) lw 2 
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You might have noticed that, because of the large font sizes we chose for the tic labels in
the previous example, the first x-axis tic collided somewhat with the lowest y-axis tic.
We can set an offset to shift the tic label positions. It works just the way offsets for labels
work.

set xr [0 : 2*pi]

set grid lt 1 lc "grey" lw .5

set xtics pi

set xtics offset 0, -1

set bmargin 5

set xtics font "Helvetica, 25"

set ytics font "Times, 18"

set format x "%.0Pπ"

set format y "%.2f ± .02 Amps"

plot sin(x) lw 2


set xr [0 : 2*pi]
set grid lt 1 lc "grey" lw .5
set xtics pi
set xtics offset 0, -1
set bmargin 5
set xtics font "Helvetica, 25"
set ytics font "Times, 18"
set format x "%.0Pπ"
set format y "%.2f ± .02 Amps"
plot sin(x) lw 2 
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Tics With No Labels
You might want tic marks with no labels at all — for example, if you are adding labels
outside of gnuplot. As we show in this example, you can accomplish this by simply setting
an empty format. If, for some reason, you want labels with no tic marks, try set tics

scale 0.

set format y ""

set format x ""

unset key

set tics scale 3

set grid

plot x, -x


set format y ""
set format x ""
unset key
set tics scale 3
set grid
plot x, -x
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Dates and Times

Gnuplot has extensive support for plotting using dates and times. There are two components to this: telling gnuplot about
the data/time format that your data is stored in, and telling it how to represent data/time data in the plot.

If you are plotting date/time data, you are almost certainly dealing with files. Here is a small file for experimenting with
date/time plotting. It consists of a few lines of data, each line containing a date, time, and a number to be plotted. The dates
are in the form day/month/2-digit-year, and the times are in the form hour:minute. You copy the lines directly, use the “Open
file” button, or make your own; in any case, you will need to save a file called “timedat.dat” in the directory in which you are
running gnuplot to use the scripts in this section as written, and it should have this format, although, of course, the values
can be different.

(Sometimes, even though we are dealing with dates and times, it can be simpler to treat the data as numerical, as in our
previous example on fitting an exponential function to solar energy data. There, we were interested in years only, and the
number of years past a certain year; treating these years as gnuplot date/times would have complicated the fitting process
without producing any benefit.)

The Example File

1/1/17 19:00 72.01

12/3/17 06:15 12.03

3/6/17 13:13 9.23
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7/12/17 17:14 72.09

23/2/18 09:15 66.06

29/7/18 14:13 55.55

9/9/18 22:19 63.12

Defining the Input Format

Before gnuplot can interpret your data as dates and/or times, you must tell it to expect date/time data with the command set
xdata time. Then, you can tell it the format in which you have stored the data. The command for that is set timefmt f,
where “f” is the date/time format you are using. These formats use special codes: %d to stand for the numerical day, %H to
stand for the numerical hour using a 24-hour clock, and so on. For a summary of all the formats that gnuplot understands,
type help timefmt at the interactive prompt. For our example data, the format should be %d/%m/%y %H:%M. This tells
gnuplot about the single space between the date and time, the colon between the hours and minutes, etc. The format must
be complete and exact. Only then will the program know when the date/time input ends and the following data columns
begin.

Defining the Output Format

The output format that gnuplot will use for printing dates and times is completely independent of the input format that
you tell it to expect in your data. You can print any portion of the data (the time only, the year only, etc.) in any format.


        1/1/17 19:00 72.01
        12/3/17 06:15 12.03
        3/6/17 13:13 9.23
        7/12/17 17:14 72.09
        23/2/18 09:15 66.06
        29/7/18 14:13 55.55
        9/9/18 22:19 63.12
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The format specifier uses the same codes available for the input specifier. If you’ve given the command set xdata time,
gnuplot will expect the x-axis (in this case) to be formatted as a date/time. Use the same command that we used to format
normal tic labels, set format x, but using the date/time formatting symbols (again, try help timefmt to see the complete
set). Let’s plot our little file with different output formats to see how this works.
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This script will plot the dates only, using the format “day-month-year”. One quirk that you
must remember: you are required to include a using command when plotting date/time
data, and you must take into account the columns used in the date/time portion. Since
we’re using two columns for the x-data, the first containing the date and the second the
time, the actual data starts in column three.

set xdata time

set timefmt "%d/%m/%y %H:%M"

set format x "%d-%m-%y"

plot "timedat.dat" using 1:3 with linespoints lw 2 pt 6


set xdata time
set timefmt "%d/%m/%y %H:%M"
set format x "%d-%m-%y"
plot "timedat.dat" using 1:3 with linespoints lw 2 pt 6
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You might have noticed a problem with the previous graph. There are too many tic labels,
and they overlap. We could make the font smaller, but we might prefer to simply plot
fewer tics. Previously, we accomplished such things by adjusting the tic interval — but
how so we do that when the tics represent temporal data? You can do it the same way,
using a number of seconds as the interval:

set xdata time

set timefmt "%d/%m/%y %H:%M"

set format x "%d-%m-%y"

hour = 60*60

day = 24*hour

set xtics 180*day

plot "timedat.dat" using 1:3 with linespoints lw 2 pt 6


set xdata time
set timefmt "%d/%m/%y %H:%M"
set format x "%d-%m-%y"
hour = 60*60
day = 24*hour
set xtics 180*day
plot "timedat.dat" using 1:3 with linespoints lw 2 pt 6
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As you add more information, temporal tic labels have a tendency to take up a lot of
space, requiring a strategy to get it all to fit. Below we use a format with the time set
below each date. The escape code “\n” in the format specification produces a new line in
the label, which puts the time of day below the date and saves on horizontal space.

set xdata time

set timefmt "%d/%m/%y %H:%M"

set format x "%d/%m/%y\nat %H:%M"

hour = 60*60

day = 24*hour

set xtics 180*day

plot "timedat.dat" using 1:3 with linespoints lw 2 pt 6


set xdata time
set timefmt "%d/%m/%y %H:%M"
set format x "%d/%m/%y\\nat %H:%M"
hour = 60*60
day = 24*hour
set xtics 180*day 
plot "timedat.dat" using 1:3 with linespoints lw 2 pt 6
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Another example of date/time formatting might be instructive. Here we also show how
to set beginning and ending values for tic ranges. Once the timefmt is set, you can use
strings in that input format to define these values:

set xdata time

set timefmt "%d/%m/%y %H:%M"

set format x "%B %d\n%Y\n%H:%M"

hour = 60*60

day = 24*hour

set xtics "1/6/17", 180*day, "1/6/18"

plot "timedat.dat" using 1:3 with linespoints lw 2 pt 6


set xdata time
set timefmt "%d/%m/%y %H:%M"
set format x "%B %d\\n%Y\\n%H:%M"
hour = 60*60
day = 24*hour
set xtics "1/6/17", 180*day, "1/6/18"
plot "timedat.dat" using 1:3 with linespoints lw 2 pt 6
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As you can see, gnuplot plots each date at time 00:00 (midnight), so, for long ranges of
days such as these, we might as well leave the times out of the output format. If we
restrict the date range, however, the time of day becomes more relevant:

set xdata time

set timefmt "%d/%m/%y %H:%M"

set format x "%b %d\n%Y\n%H:%M"

hour = 60*60

set xr ["1/1/17 15:00" : "1/1/17 20:00"]

set xtics 0.5 * hour

plot "timedat.dat" using 1:3 with linespoints lw 2 pt 6


set xdata time
set timefmt "%d/%m/%y %H:%M"
set format x "%b %d\\n%Y\\n%H:%M"
hour = 60*60
set xr ["1/1/17 15:00" : "1/1/17 20:00"]
set xtics 0.5 * hour
plot "timedat.dat" using 1:3 with linespoints lw 2 pt 6
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The previous plot would be more attractive if we extracted the redundant date information
into an axis label:

set xdata time

set timefmt "%d/%m/%y %H:%M"

set xlab "Measurements on Jan. 1, 2017" font "Helvetica, 20"

set format x "%H:%M"

hour = 60*60

set xr ["1/1/17 15:00" : "1/1/17 20:00"]

set xtics 0.5 * hour

plot "timedat.dat" using 1:3 with linespoints lw 2 pt 6


set xdata time
set timefmt "%d/%m/%y %H:%M"
set xlab "Measurements on Jan. 1, 2017" font "Helvetica, 20"
set format x "%H:%M"
hour = 60*60
set xr ["1/1/17 15:00" : "1/1/17 20:00"]
set xtics 0.5 * hour
plot "timedat.dat" using 1:3 with linespoints lw 2 pt 6
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Internationalization of Dates
Gnuplot knows the names of the months in several languages. The languages available,
and how to designate them, depend on your system. This example should work with any
Linux and some other unix-derived systems. It prints the names of the months in Spanish.
We also set another flag that uses commas rather than dots as decimal points, as is the
standard in many European countries. This affects the formatting of the numbers on the
y-axis.

If you get an error about a missing locale, you can check (on Linux, etc.) for available
locales with the shell command locale -a. If you want to install the Spanish locale, try,
as root, locale-gen es_ES followed by update-locale.

set xdata time

set locale "es_ES"

set decimalsign locale "es_ES"

set timefmt "%d/%m/%y %H:%M"

set format x "%d\n%B\n%Y"

hour = 60*60

day = 24*hour

set xtics "01/01/17", 90 * day

set yr [64 : 75]

set ytics 0.5

plot "timedat.dat" using 1:3 with linespoints lw 2 pt 6


set xdata time
set locale "es_ES"
set decimalsign locale "es_ES"
set timefmt "%d/%m/%y %H:%M"
set format x "%d\\n%B\\n%Y"
hour = 60*60
day = 24*hour
set xtics "01/01/17", 90 * day
set yr [64 : 75]
set ytics 0.5
plot "timedat.dat" using 1:3 with linespoints lw 2 pt 6



Lee Phillips: Gnuplot 5 2nd ed. Tic Control 228

Geographic Coordinates
If you set xtics geographic, gnuplot can convert coordinate values into degrees,
minutes, and seconds, including translating into E and W longitudes or N and S latitudes.
Formatting uses a few special codes (type help geo for a list): D for integer degrees, M
for minutes, S for seconds, and N to get “N” and “S” rather than plus or minus, or E to get
E and W. This is useful when drawing maps or plotting measurements taken at various
places on the surface of a planet. Here’s how it works:

set xtics geographic

set xtics format "%D %M’ %S’’%N"

set xr [-90:90]

set xtics 30

plot rand(0)*exp(-x**2/500) notitle


set xtics geographic
set xtics format "%D %M’ %S’’%N"
set xr [-90:90]
set xtics 30
plot rand(0)*exp(-x**2/500) notitle



Chapter 9

Gnuplot and LATEX

229
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TEX has been the tool of choice for the creation of papers and documents for mathematicians, physicists, and other authors
of technical material for many years. Presumably, this includes many of the readers of this book. Although it takes some
effort and study to learn how to use this venerable work of free software, its devotees become addicted to its ability to
produce publication-quality manuscripts in a plain text, version-control friendly format.

Most TEX users use LATEX, which is a set of commands and macros built on
top of TeX that allow automated cross-referencing, indexing, creation of tables
of contents, and automatic formatting of many types of documents. TEX, LATEX,
a host of associated utilities, fonts, and related programs are assembled into a
large package called TEX Live. It’s available through the package managers of
many Linux distributions, but to get an up-to-date version, one often needs to
download it from its maintainers directly.

One reason gnuplot is so popular with scientists, mathematicians, and engi-
neers is its ability to interoperate so intimately with LATEX. Just about any plotting
program can make image files that LATEX can include in documents. But gnuplot
can work with LATEX in a much deeper way that helps authors and publishers cre-
ate technical documents with a harmonious blending of text, math, and graphs.

If you’re doing things the simple way, by using gnuplot to create a file that
you then include using LATEX’s \includegraphics command (for example), you
should ensure that you’re using one of gnuplot’s high-quality output formats.

https://www.tug.org/whatis.html
https://www.tug.org/texlive/
https://www.tug.org/texlive/acquire.html
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This will lead to a document with higher resolution or better appearing figures, more suitable for publication. Generally
speaking, these are the terminals that are based on the Cairo libraries: pdfcairo, epscairo, and pngcairo; the latter is the
one used for most of the example illustrations in this book. Newer versions of gnuplot have generally replaced the older, plain
png (etc.) terminals with these, so this is not usually an issue, but you should be aware of the quality difference; the figure
shows a plot using the old png terminal compared with the same plot using the pngcairo terminal. In the Cairo terminals,
text and anti-aliasing is handled better, and the drawing of curves in plots is vastly improved. The curve in the older version
is much more jagged, compared with the smooth rendering from the Cairo library. pngcairo also supports transparency and
Unicode, so it is more flexible and takes good advantage of gnuplot’s newer features. To see the list of terminals supported
by your compilation of gnuplot, just type set term. To select, for example, the Cairo-based PNG format, begin your script
with set term pngcairo.

Some Other Terminals

The pdfcairo terminal offers all the features of the pngcairo terminal (transparency, Unicode), with the additional benefit
of resolution-independence. The PDF-based figures that this terminal produces can be scaled up arbitrarily without loss
of quality. They consist of drawing and character-placement instructions rather than the list of colored dots comprising a
bitmapped format such as PNG. You can zoom in to this document as far as your PDF reader will allow, and observe that the
figure made using the pdfcairo terminal remains completely smooth, just as the text that you are reading. Compare with
the pngcairo figure above, which becomes a bit fuzzy as you zoom in. For this reason, some journals prefer that you supply
figures in PDF or another resolution-independent format, which gnuplot makes easy to do. One final note: the Postscript
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standard supports neither transparency nor simple use of Unicode. Therefore, it is generally simpler to use the pdfcairo
terminal rather than setting up a workflow where you are creating Postscript files and converting them to PDF.
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pdfcairo terminal

sin(1/x)

One drawback to figures in PDF format is that they aren’t supported on the Web (entire
PDF documents are supported well, but HTML with PDF figures will not work smoothly).
Fortunately, gnuplot supports an SVG terminal (set term svg), which supports trans-
parency and Unicode, and is as easy to use as any of the other terminals. SVG is also
resolution-independent, and, as SVG support is finally widespread among browsers, it’s a
good choice for putting graphs up on the web. Gnuplot’s SVG files can also feature interac-
tivity, as we saw in a previous example implementing “hypertext” labels.

If you have no interest in LATEX you can safely skip the rest of this chapter, because there’s
nothing else here crucial for gnuplot knowledge. If you happen to be evaluating document
preparation systems, however, you might want to look this chapter over, because the com-
bination of LATEX with gnuplot provides some unique capabilities.

In order to reproduce the examples before this chapter, all you needed to have installed
was gnuplot. To try out the techniques in this chapter, of course, you’ll need to have TEX installed, as well. This is a very
large installation — much larger than gnuplot. The modern way to get all the TEX bits and pieces is to install a bundle called
TEX Live. If you’re on Linux, you can probably find a new enough version of TEX Live through your package manager. If
you want a really up-to-date version, or need to run it on another operating system, you may want to download it from its
maintainers directly.

https://en.wikibooks.org/wiki/PostScript_FAQ#Does_PostScript_support_unicode_for_CJK_fonts.3F
https://www.tug.org/texlive/
https://www.tug.org/texlive/acquire.html
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As this is not a book about TEX, wewon’t spendmuch time explaining how to use the language and the various TEX engines;
you will be assumed to have it installed and to possess a basic knowledge of TEX markup and of how to process documents.
But we do provide complete gnuplot scripts and LATEX documents for each example. This chapter is laid out in a somewhat
different format from previous ones. Our structure up to now has been to place gnuplot scripts next to the graphs that they
produce; but our work in this chapter will involve combining gnuplot with LATEX in a way that is better served by a less
structured arrangement.

Simple Graphics Inclusion

Since this book is itself a PDF document that uses LATEX, as well as other tools, in its processing, this chapter will be somewhat
recursive in nature. The example above, of the inclusion of a PDF figure in a LATEX document, uses the wrapfig LATEX package,
which allows the text to wrap around the image, which can be floated to the right or the left. Here is a simplified document
that produces the example. This book is processed with lualatex, but other engines should work just as well, for example
pdflatex or xelatex.

\documentclass[12pt]{article}

\usepackage{graphicx}

\usepackage{wrapfig}

\usepackage{blindtext}
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\begin{document}

\begin{wrapfigure}{r}{0.25\textwidth}

\includegraphics[width=0.25\textwidth]{pdfcairo}

\end{wrapfigure}

\blindtext

\end{document}

The blindtext package is good for testing and generating examples: it spits out filler text. Run this document through
LATEX and see what you get! It’s included as an attachment, as the gnuplot scripts in previous chapters, which should make
opening and saving the file more convenient. You need, of course, to have an image in your directory called “pdfcairo.pdf”
for this to work unaltered. Actually, as you may know, you can have any type of image that your TEX engine supports, so
the highlighted includegraphics line will work if you happen to have a PNG image called “pdfcairo.png” in your directory
— but, up above, we were interested in demonstrating the inclusion of PDF images.

Of course, this example document doesn’t care whether the graphics file comes from gnuplot or anything else. This is the


\documentclass[12pt]{article}
\usepackage{graphicx}
\usepackage{wrapfig}
\usepackage{blindtext}

\begin{document}

\begin{wrapfigure}{r}{0.25\textwidth}
\includegraphics[width=0.25\textwidth]{pdfcairo}
\end{wrapfigure}

\blindtext

\end{document}
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simple technique that you’ll use, even if you’re making graphs with gnuplot, if you post-process the files with the Gimp or
another image processing program.

We turn now to gnuplot terminals that are specifically designed to work with LATEX.

The tikz Terminal

Before trying this out, you need to make sure that your version of gnuplot has the tikz terminal baked in. Since this terminal
has some slightly uncommon dependencies, not all versions do. If you compiled gnuplot yourself and don’t have certain
libraries installed on your system, the tikz terminal will be missing. Type set term to see the list of terminals. If tikz is
not on the list, you can get essentially the same results, with some extra inconvenience, by using the epslatex terminal,
covered in the next section. However, tikz is the modern way, and might be worth the trouble of installing the required
libraries and recompiling.

The purpose of the tikz terminal, and similar solutions, is to make the fonts used in your graph, in the tic labels, title,
and elsewhere, to match the fonts used in the rest of your document. This produces a unified, sophisticated appearance, and
makes your text easier to read. It is quite difficult to do this entirely within gnuplot, or by post-processing with an image
editor. Even if you could get these programs to find and use the fonts that will be incorporated into your document by LATEX,
there would be no way to match the resulting typographic detail in the main text: the kerning, line breaking, ligatures, and
so on. And if you include equation labels in your graph, you would not have access to TEX’s mathematical syntax nor any
way to produce results comparable to its math output. Your best alternative would be to use the “enhanced text” markup we
covered earler, which is cumbersome, unpredictable, and usually leads to results that, compared with TEX’s mathematical
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output, are notably unattractive (but can be convenient in simple cases).

The first step is to tell gnuplot to set terminal tikz. Then, you need to direct the output to a file, and the name of
the file should end with “.tex” (not an actual requirement, but this will be more convenient). For example, set output

"r3.tex". After those two lines, you can create any type of plot you need. The result will be, not a graphics file, such as
a PDF or PNG image, but a TEX file, consisting of a set of instructions for LaTeX. You can even read and edit this file in a
text editor, to further customize it, for example. Here is an example gnuplot script that uses the tikz terminal, and includes
some mathematical labels; we create these using TEX syntax:
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set terminal tikz

set out 'r3.tex'

unset key

set label\

'\Large$\displaystyle \lim_{x\Longrightarrow0}\frac{\sin(x)}{x}=1$'\

at graph .55, .75

set title\

'\Large Illustrating L’Hô\-pi\-tal’s Rule: $\frac{\sin(x)}{x}$'

plot [0:15] sin(x)/x lw 2

If you run this through gnuplot and look at the resulting “r3.tex” file, you will see a long list of strange-looking commands.
These are drawing commands that will be interpreted by the tikz package (actually, the customized gnuplot-lua-tikz

package included with gnuplot) to produce a resolution-independent, vector plot embedded into your LATEX document.

A few notes are in order: there is a difference, in gnuplot, between strings inside of double quotation marks and those
inside of single quotation marks. We’ve usually used double quotes in our examples, but, in this case, we’ve had to use
single quotes. This is because of the backslashes in the TEX commands within the labels: within a double-quoted string in


set terminal tikz
set out 'r3.tex'
unset key
set label\
 '\Large$\displaystyle \lim_{x\Longrightarrow0}\frac{\sin(x)}{x}=1$'\
 at graph .55, .75
set title\
  '\Large Illustrating L’Hô\-pi\-tal’s Rule: $\frac{\sin(x)}{x}$'
plot [0:15] sin(x)/x lw 2
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gnuplot, backslashes are not literal, but make the following character special. The other option is to use double quotes and
also double the backslashes.

The other detail involves the use of \displaystyle in the equation. The displayed math environment is not available
within tikz, requiring this modifier. Otherwise, you can put pretty much any TEX content you want inside titles and labels;
it will all be passed on to LATEX.

Here is a small document that shows how to include the file:

\documentclass[12pt]{article}

\usepackage{gnuplot-lua-tikz}

\usepackage{fontspec}

\usepackage{wrapfig}

\begin{document}

\openup.5em

\begin{wrapfigure}{r}{0.5\textwidth}

\resizebox{3.5in}{!}{\input{r3}}

\end{wrapfigure}

\noindent The figure to the right provides an illustration of
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L’Hô\-pi\-tal’s Rule. Recall that this rule can be applied when

taking the limit as $x\longrightarrow x_a$ of a ratio of two

functions where the ratio approaches the indeterminate form

$\frac{0}{0}$; in the case where both functions are

differentiable at $x_a$, the ratio approaches the ratio of their

derivatives. In the case illustrated both $\sin(x)$ and $x

\longrightarrow0$ as we approach the origin, but the ratio of their

derivatives, $\frac{\cos(x)}{1} \longrightarrow 1$. L’Hô\-pi\-tal’s

Rule also applies in the case of the indeterminate form $\frac{\infty}{\infty}$.

\end{document}

We’ve chosen to place the figure inside a wrapfigure environment, as before. But since it’s not a graphics file, you don’t
include it with an \includegraphics command; it’s a text file full of TEX and tikz commands, so you \input it. You can,
of course, make it any size you like. Note that since the labels in the plot as well as the text contain Unicode characters, you
need to include the fontspec package (or something equivalent) and process the document using a Unicode-aware engine,
such as lualatex or xelatex.


\documentclass[12pt]{article}
\usepackage{gnuplot-lua-tikz}
\usepackage{fontspec}
\usepackage{wrapfig}
\begin{document}
\openup.5em

\begin{wrapfigure}{r}{0.5\textwidth}
\resizebox{3.5in}{!}{\input{r3}}
\end{wrapfigure}

\noindent The figure to the right provides an illustration of  
L’Hô\-pi\-tal’s Rule.  Recall that this rule can be applied when  
taking the limit as $x\longrightarrow x_a$ of a ratio of two  
functions where the ratio approaches the indeterminate form    
$\frac{0}{0}$; in the case where both functions are
differentiable at $x_a$, the ratio approaches the ratio of their 
derivatives. In the case illustrated both $\sin(x)$ and $x  
\longrightarrow0$ as we approach the origin, but the ratio of their  
derivatives, $\frac{\cos(x)}{1} \longrightarrow 1$. L’Hô\-pi\-tal’s
Rule also applies in the case of the indeterminate form $\frac{\infty}{\infty}$.

\end{document}
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When you do so, you’ll get a PDF file that looks like this:
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The figure to the right provides an illustration

of L’Hôpital’s Rule. Recall that this rule can

be applied when taking the limit as x −→ xa

of a ratio of two functions where the ratio ap-

proaches the indeterminate form 0
0
; in the case

where both functions are differentiable at xa,

the ratio approaches the ratio of their deriva-

tives. In the case illustrated both sin(x) and

x −→ 0 as we approach the origin, but the ra-

tio of their derivatives, cos(x)
1

−→ 1. L’Hôpital’s

Rule also applies in the case of the indeterminate form ∞
∞ .

If you zoom in, either on the figure reproduced here or in the PDF that you generate by processing the document, you
will see that the figure is resolution-independent. Notice also that the fonts used on the graph match the fonts in the text,
and that the math on the graph is genuine LATEX math. This is because all the graph text is passed to LATEX for processing;
none of it is set by gnuplot.

If you change the font specifications in the document, for example by changing the optional argument in the first line that
sets the overall font size, and run it through TEX again, you will see that not only does the font size of the text change, but
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the text in the graph, including the tic labels, title, and label, change to match. Changing the typefaces has the same effect:
the text and graph will always look as if they belong together.

Here’s an example. Let’s change the preamble of the LATEX document to use a different typeface as the main font, and,
for good measure, load the euler package, which uses a different set of fonts for math from the familiar, default Computer
Modern:

\documentclass[12pt]{article}

\usepackage{gnuplot-lua-tikz}

\usepackage{euler}

\usepackage{fontspec}

\usepackage{wrapfig}

\setmainfont{Ubuntu Light}

\begin{document}

[etc.]

Running this through TEX produces this PDF:


\documentclass[12pt]{article}
\usepackage{gnuplot-lua-tikz}
\usepackage{euler}
\usepackage{fontspec}
\usepackage{wrapfig}
\setmainfont{Ubuntu Light}
\begin{document}
[etc.]
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The figure to the right provides an illustration

of L’Hôpital’s Rule. Recall that this rule can be

applied when taking the limit as x −→ xa of

a ratio of two functions where the ratio ap-

proaches the indeterminate form 0
0
; in the case

where both functions are differentiable at xa,

the ratio approaches the ratio of their deriva-

tives. In the case illustrated both sin(x) and

x −→ 0 as we approach the origin, but the ra-

tio of their derivatives, cos(x)
1

−→ 1. L’Hôpital’s

Rule also applies in the case of the indeterminate form ∞∞ .

Notice how the fonts, including those used for math symbols, in the main text still match those used in the graph.

The epslatex Terminal

If your version of gnuplot supports the tikz terminal there is probably no need for you to read this section. The epslatex
terminal is an older way to achieve the same results as we did in the previous section, but with slightly less convenience.

To use the epslatex terminal, your gnuplot script should start with set term epslatex. As an example, replace the
first line of the tikz terminal script with that command. After running the script, gnuplot will create two output files rather



Lee Phillips: Gnuplot 5 2nd ed. Gnuplot and LATEX 243

than the single file that we usually get. We will have our graph in the form of an encapsulated PostScript (EPS) file with an
“eps” extension. We will also have a LATEX file with the name that we specify in the set out command. We should pick a
filename with the extension “.tex”, as before, to make subsequent processing more convenient. The EPS file will have the
same base name (name aside from the extension) as the one given in the set out command.

Assuming our final desired result is a PDF document, we must first transform the encapsulated PostScript file into a PDF
file. It doesn’t matter what tool we use to accomplish this, but one convenient method available on Linux is to use the
command-line tool epstopdf, which does just what it says. Another possibility is the convert utility that comes with the
incredibly useful ImageMagick package. On the Macintosh, if epstopdf is not installed, we need merely open the EPS figure
in Preview and then save it. Preview converts the file to PDF for display.

The LATEX file generated by the gnuplot script normally need not be edited nor looked at. Its job is to overlay all the text,
including the tic and axis labels, title, etc., onto the plot in the EPS file. If you look at the graph file itself, you will see a bare
plot with neither labels nor text.

The LATEX document will look exactly as it did when using the tikz terminal; the command to include the graphics file is
now within the \inputted .tex file.

Calling gnuplot from LATEX

This recipe is, in a way, the reverse of the previous examples in this chapter. We are going to learn how to generate gnuplot
commands from within a LaTeX document.
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The method introduced in this section can be very useful when we want to enfold graphical elements into our typeset
text rather than include them in floating figure environments. It also has the advantage of encompassing all the typesetting
and drawing commands in a single file that is processed with one command, with no need to keep track of a proliferation
of image files and gnuplot scripts. This makes it simpler for your manuscript source to become self-documenting and easily
modifiable.

This is a flexible and powerful technique with which we can combine plots generated by gnuplot with TikZ drawing
commands. If we become familiar with TikZ, we will be able to arrange gnuplot graphs and PGF graphics in arbitrary ways
on the page (PGF is the Portable Graphics Format, the actual drawing engine for which TikZ is a higher-level language). We
don’t have space here for a TikZ tutorial, but it should be possible to understand the workings of a simple example:

\documentclass[12pt]{article}

\usepackage{tikz}

\usepackage{pgfplots}

\begin{document}

A sinewave looks like

\tikz\draw[domain=0:18.84, scale=.1] plot function{sin(x)};

and a spiral looks like

\tikz\draw[parametric, domain=0:18.84,scale=.1]

http://cremeronline.com/LaTeX/minimaltikz.pdf
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plot function{.2*t*cos(t),.2*t*sin(t)};.

\end{document}

This file must be processed with an extra argument to the TEX engine that gives permission for the document to invoke
an external program (in our case, gnuplot). This is for security; the concern is that malicious TEX documents might run
programs without the user’s knowledge, so you must turn on this ability manually. Usually, the extra argument is --shell-
escape, but on some systems it is --write18. With the above file saved as gnutikz.tex, I processed it with the command
lualatex --shell-escape gnutikz, and got the following result:

A sinewave looks like and a spiral looks like .

I got an identical result using xelatex in place of lualatex; other engines should work as well.

A few words about how this works: the pictures are placed inline with the rest of the line by the \tikz commands. These
are followed by \draw with the options in square brackets. The domain option serves the same purpose as the [a:b] plot
notation within gnuplot; the scale option scales the final figure by the multiplicative factor supplied; and the parametric


\documentclass[12pt]{article}
\usepackage{tikz}
\usepackage{pgfplots}
\begin{document}

A sinewave looks like
  \tikz\draw[domain=0:18.84, scale=.1] plot function{sin(x)};
and a spiral looks like
  \tikz\draw[parametric, domain=0:18.84,scale=.1]
  plot function{.2*t*cos(t),.2*t*sin(t)};.

\end{document}
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option means that the following plot command is a parametric function, with t as the parameter and the x and y coordinates
separated by a comma (we covered gnuplot parametric plotting in Chapter 1). A single command on our part is all that
is required. The function keyword within the \tikz command causes LATEX to call out to gnuplot to create tables that
are subsequently read in by PGF to create the illustrations, which are then inserted into the page and typeset along with
everything else. You can get a more detailed glimpse at what happens behind the scenes by looking at the auxiliary files left
on the disc by the last \tikz command. In this case, these will be called “gnutikz.pgf-plot.gnuplot”, which is the gnuplot
script created by tikz, and which is run through gnuplot to create another file, called in this case “gnutikz.pgf-plot.table”,
which is the set of plot coordinates read in by tikz to make the little pictures. You can safely delete these auxiliary files when
you are done.

TikZ/PGF can produce any type of diagram, including full-blown graphs with axes, tic marks, and so on, including LATEX-
typeset labels; but if you’re making a complete graph you’re probably better off running gnuplot manually and using the
techniques of the previous two sections. This is especially true if the graph is complicated or contains many elements, for
in this case LATEX processing will be significantly slower than using gnuplot to create a standalone plot file. This is because
reading and parsing the resulting extremely large table will bog LATEX down. But for placing small graph-like illustrations
inline with the text, mixing themwith other TikZ graphics, or combining gnuplot’s talents with the flexible TikZ/PGF system
to make more elaborate diagrams, the techniques described here can be uniquely powerful.
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The previous chapter showed you how to embed plots within TEX documents. It’s certainly possible to make use of TEX’s
and TikZ’s various graphics commands to position multiple plots in any way you can imagine, with enough work. But
gnuplot has its own way to do this: this chapter will show you how to combine several plots into a larger visualization using
itsmultiplot mode. Multiplot allows you to place a set of plots anywhere on the page, in a regular array, one inside the other,
etc. It is also another, and sometimes more convenient, way, besides issuing a set of plot commands separated by commas,
to plot multiple curves, etc., within a single frame.

In the example scripts in this chapter youwill see the set multiplot command that tells gnuplot to enter multiplot mode.
If you are entering these commands at the interactive prompt, rather than running a script, you will see that the prompt,
which is usually gnuplot> , has become multiplot> to remind you that you are in a special mode. To leave multiplot
mode, you can enter the command unset multiplot (which can be abbreviated unset multi). In some terminals, nothing
is displayed nor written to a file until the unset multi command is issued; in others, including most recent versions of
interactive terminals, such as the Qt terminal, the plots are built up as you enter the plot commands while in multiplot mode.
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In the following example, the plot of two simple functions could of course have been
accomplished in the normal (non-multiplot) plotting mode. In that case, the two functions
would be included in the same plot command and separated by a comma; if you entered a
second, separate plot command, the existing plot would have been replaced. Multiplot
mode allows you to build up the plot, adding elements without eliminating existing
ones, and so can be useful for interactive experimentation. Since each plot command
in multiplot mode generates its own key, this, in conjunction with key positioning, can
be used, as here, for the convenient generation of plot labels. To get a similar effect
without multiplot mode, you would need to turn off the key and set labels manually for
the individual plots.

set multiplot

set yr [-1 : 1]

set key at -3,.05

plot .4*sin(x)+.5 lw 3 dt "-_"

set key at 8,.05

plot .4*cos(x)-.5 lw 3


set multiplot
set yr [-1 : 1]
set key at -3,.05
plot .4*sin(x)+.5 lw 3 dt "-_"
set key at 8,.05
plot .4*cos(x)-.5 lw 3
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Arrays of plots
This example illustrates the use of automatic grid layouts in multiplot mode, as well as
gnuplot’s knowledge of Bessel functions. The command set multiplot layout 2, 2

creates a 2 × 2 grid of plots, which are filled by subsequent plot commands from left to
right and top to bottom. Of course, you can substitute any numbers in place of the “2”s to
get a rectangular array of any shape you need. The key is used as a convenient titling
mechanism, with the samplen set to avoid producing a redundant sample line (the tic
length is added to the set value of samplen, so a negative value must be set to end up
with a total length ≤ 0).

set multiplot layout 2, 2

set key top left samplen -1

plot besj0(x) lw 2

plot besj1(x) lw 2

plot besy0(x) lw 2

plot besy1(x) lw 2


set multiplot layout 2, 2
set key top left samplen -1
plot besj0(x) lw 2
plot besj1(x) lw 2
plot besy0(x) lw 2
plot besy1(x) lw 2
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Manual plot positioning
If you need an arrangement of plots more complex than a regular rectangular grid, you
must specify the origin and size for each plot manually. This is accomplished with a set
origin and set size for each plot that is to make up part of the total illustration. But
what coordinate system do these commands use? They can’t use any of the coordinate
systems that are defined relative to a plot’s axes, nor the graph coordinate system, as
these could be different for each individual plot. For these purposes, gnuplot provides
screen coordinates, automatically used by these commands. Screen coordinates go from
0 at the bottom and left to 1 at the top and right, relative to the entire illustration. The
set origin command sets the location of the lower-left corner of the plot, including
the invisible margin.

set multi

e(x) = exp(x/10)

f(x) = exp(-x/10)

g(x) = e(x) - f(x)

set size .5, 1

plot e(x), f(x), g(x)

set ytics 1

set key samplen -1

set size .5, 1/3.

set origin .5, 0

plot g(x) * sin(x)

unset xtics

set origin .5, 1./3

plot f(x) * sin(x)

set origin .5, 2./3

plot e(x) * sin(x)


set multi
e(x) = exp(x/10)
f(x) = exp(-x/10)
g(x) = e(x) - f(x)
set size .5, 1
plot e(x), f(x), g(x)
set ytics 1
set key samplen -1
set size .5, 1/3.
set origin .5, 0
plot g(x) * sin(x)
unset xtics
set origin .5, 1./3
plot f(x) * sin(x)
set origin .5, 2./3
plot e(x) * sin(x)
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If you want to align plots precisely, using set size and set origin commands is not
the best approach, because the automatic margins that gnuplot adds to make room for axis
labels creates unpredictable spaces around the plots. You can set the margins manually,
but that still fails to work for precise alignment. What does work is to use a special margin
command that gnuplot provides just for this purpose. The set Xmargin at screen Y

command, where X can be r, l, b, or t, and Y is the screen coordinate, causes the given
edge of the plot to be placed exactly where you specify. This replaces the size and
origin settings, which are ignored when these commands are issued. A simple example
should make this clear:

set multi; unset key

set xr [-10 : 10]; set yr [-1 : 1]

set ytics -1, .5, .5

set bmargin at screen .1

set lmargin at screen .1

set rmargin at screen .9

set tmargin at screen .5

plot sin(x/5) lw 2 dt "_-."

unset xtics

set xr [-10 : 0]; set yr [0 : 1]

set ytics .2, .2, 1

set bmargin at screen .5

set tmargin at screen .9

set rmargin at screen .5

plot cos(x/2)**2

unset ytics; set xr [0 : 10]

set lmargin at screen .5

set rmargin at screen .9

plot (x-5)**2/25 lw 3 dt "_.._"


set multi; unset key
set xr [-10 : 10]; set yr [-1 : 1]
set ytics -1, .5, .5
set bmargin at screen .1
set lmargin at screen .1
set rmargin at screen .9
set tmargin at screen .5
plot sin(x/5) lw 2 dt "_-."
unset xtics
set xr [-10 : 0]; set yr [0 : 1]
set ytics .2, .2, 1
set bmargin at screen .5
set tmargin at screen .9
set rmargin at screen .5
plot cos(x/2)**2
unset ytics; set xr [0 : 10]
set lmargin at screen .5
set rmargin at screen .9
plot (x-5)**2/25 lw 3 dt "_.._"
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There are a few details about the previous example that it is worthwhile to dwell on. The bottom and top graphs have
different y-scales, which is not a problem, since they do not share a y-axis. But we needed to set the ytics carefully to avoid
a collision of axis labels. On the top-right graph, we turned off the ytics; the alignment implies that the two top graphs share
the same y-range, which they do, so the labels on the top-left graph can serve for both. You must be careful, when you align
plots in this way, that they do in fact have the axis ranges that their positioning implies. We turned of the xtics for the top
graphs, allowing the x-axis on the bottom graph to indicate their x values. Notice how we set the x-ranges of the top graphs
to agree with their alignment with the x-axis of the bottom graph. Finally, notice how the graphs are aligned precisely using
the at screen margin commands; this would be difficult if not impossible to achieve with the set origin and set size

commands.
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Inset plots
A small graph placed inside a larger one, to illustrate some detail of the latter, perhaps at a
magnified scale, is called an inset plot. They are easy to make using gnuplot in multiplot
mode, as shown in this example. The only new command in this script is the clear

command, which erases everything in the area defined by the current set origin and
set size commands. This use useful when making inset plots, to erase the grid lines in
the area that will be used for the inset, as they will not align with the latter’s tic marks
and create confusion. The clear command doesn’t work with areas defined by the set
Xmargin at screen commands, only the set origin and set size commands. We
also turned off the grid and key in the inset, to avoid clutter.

set multi

set samples 1000

set grid lt -1 dt "_ "

set xtics 1

set ytics 10

plot [0:2*pi] exp(x)*sin(1/x)

set origin .15, .25

set size .4, .3

clear

unset grid

unset key

set xtics .05

set ytics 1

plot [0:.2] exp(x)*sin(1/x)


set multi
set samples 1000
set grid lt -1 dt "_ "
set xtics 1
set ytics 10
plot [0:2*pi] exp(x)*sin(1/x)
set origin .15, .25
set size .4, .3
clear
unset grid
unset key
set xtics .05
set ytics 1
plot [0:.2] exp(x)*sin(1/x)
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Gnuplot version 5 gained the ability to create parallel axis plots. These are sufficiently dissimilar from gnuplot’s other
plot types to merit their own chapter. Sometimes called “parallel coordinate plots,” these plots are a way to visualize data
in multiple dimensions. They are rather unusual, and you may never have seen one before. We’ll approach them by way
of some U.S. census data, courtesy of https://www.census.gov/support/USACdataDownloads.html. We’ve assembled some
data, from different census files, into one data file called “census.dat”. If you want to play along, and you should, you can
find this file in the usual place—the download area where you can retrieve copies of this book and all the other supporting
material. The file is in tab-separated-value, or TSV, format; we’ll have to let gnuplot know about that, so it can read the data
into the proper columns.

The file has 3,199 rows: one for each county in the United States, plus rows for state totals, the U.S. total, and the first
row for column names. We’ve “commented-out” the state total rows and the U.S. total row. The first column gives the name
of the county, but we won’t be including those names in the plots. The remaining columns give data for the year 2005,
per county; they are, in order, total larcenies, total murders, total motor vehicle thefts, total robberies, percentage of people
under the age of 18 who do not have health insurance, and the estimated population as of July of that year.

When exploring a set of data like this, one can start by looking for trends and associations between quantities, always
remembering that, as the saying goes, “correlation does not imply causation.” Let’s pick two columns and make a scatterplot.
We’ll plot motor vehicle thefts versus larcenies, dividing each quantity by the county population, in order to plot rates rather
than raw counts. We’ll make the data points transparent, by using a color specification with an alpha channel, to create a
higher visual density in regions where many data points overlap. The simple script that does all this is

unset key

http://www.tylervigen.com/spurious-correlations
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set datafile sep tab

set xlab "Motor vehicle theft rate"

set ylab "Larceny rate"

plot "census.dat" u ($4/$7):($2/$7) pt 7 lc "#e0ff00ff"

There are no new commands here. The result of the script is the figure below. It may not be surprising that two types of
property crime are pretty highly correlated.
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We could continue in this fashion, plotting various combinations of pairs of quantities; essentially looking at 2D slices of
the data, which can be thought of as 3,000 points embedded within a 6D space: one dimension for each statistical quantity,
not including the county name. We could even encode additional quantities, as we’ve done in some previous chapters, using
dot size or color, perhaps combined with a 3D perspective plot, to look at more than two dimensions at once. But this does
not treat every dimension the same, encoding some into position, others into color, etc.

The parallel axis plot is one approach to visualizing multidimensional data. The principles of its construction are simple,
but interpretation can take practice. For each dimension, the plot has a vertical axis; these parallel axes are spaced equally,
and may or may not feature tics or labels. For each data point, a line is drawn connecting its values along each of the axes.
Points that are close together in the multidimensional space will thus lead to lines that are close together, allowing you to
see clusters or associations in the data, or so it is hoped. These visualizations are probably most effective when the number
of data points is much larger than the number of dimensions, as in our examples in this chapter. The previous release of
gnuplot limited the maximum number of parallel axes, but that restriction has been removed in release v.5.4.

New Parallel Axis Syntax

The syntax for parallel axis plotting has been changed in v.5.4 of gnuplot. This means that existing scripts for parallel axes,
written for v.5.x, 𝑥 < 4, will fail. Breaking changes are always regrettable, but in this case the greater flexibility of the new
syntax, and the dropping of the limitation on the number of axes, required a reworking of the command. All the scripts in
this chapter have been verified on v.5.4, and will not work on previous versions.
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To make a parallel axis plot, use the with parallel clause within the plot command or
set the data style with the command set style data parallelaxes. It’s usually best
to disable the border and the default ytics. By default, the parallel axes will be unadorned,
but you can put tics on them if you like. The command for that is the second highlighted
command here. In previous examples we’ve used gnuplot’s default whitespace separator
for data columns, but for this one our data file uses tabs; we need to tell gnuplot about
this, which is done in the third highlighted command.

Since this data tends to be crowded at low values with a scattering of high values, it’s
helpful to scale the data to spread it out more uniformly. This is often done with log
scaling, but here we defined a scaling function, s(x), that takes the square root of the
data.

Nevertheless, because of the large number of datapoints, the plot is a nearly uniform
mass, and doesn’t convey much insight. We’ll try to handle this problem in the following
examples.

The final plot command has five parts, which gives us the five parallel axes; for each
axis, the corresponding part of the plot command specifies what to plot there, with the
usual using syntax. To get comparable rates, we divide each quantity by column 7, which
holds the population of the particular region. We don’t do this with column 6, because
that number is already recorded as a percentage.

set style data parallelaxes

unset key

unset border; unset ytics

set paxis 1 tics 5

s(x) = x**.5

set datafile sep tab

set xtics ("%% Minors without HS" 1, "Larceny" 2,"MV Theft" 3,"Robbery" 4, "Murder" 5)

plot "census.dat" u 6, "" u (s($2/$7)), "" u (s($4/$7)), "" u (s($5/$7)), "" u (s($3/$7))


set style data parallelaxes
unset key
unset border; unset ytics
set paxis 1 tics 5
s(x) = x**.5
set datafile sep tab
set xtics ("%% Minors without HS" 1, "Larceny" 2,"MV Theft" 3,"Robbery" 4, "Murder" 5)
plot "census.dat" u 6, "" u (s($2/$7)), "" u (s($4/$7)), "" u (s($5/$7)), "" u (s($3/$7)) 
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One way to deal with too much data is simply to skip some data points. In this example we
make the same plot, but use the every command to only plot every 20th point. In addition,
we’ve added tics to the remaining axes. You can use the same tic commands, including
the label offset used in this script, as in set ytics, etc. This random subsample of the
data does reveal more structure than the full plot above, but it would be preferable to find
a way to see patterns without leaving out points, if possible. We’ll return to this shortly.

The every clause must be repeated for every column, or else the current version of
gnuplot will segfault.

set style data parallelaxes

unset key

unset border; unset ytics

set paxis 1 tics 5

set paxis 2 tics .02

set paxis 3 tics .02

set paxis 4 tics .01

set paxis 5 tics .001 offset 5

s(x) = x**.5

set datafile sep tab

set xtics ("%% Minors without HS" 1, "Larceny" 2,\

"MV Theft" 3,"Robbery" 4, "Murder" 5)

plot "census.dat" u 6 every 20, "" u (s($2/$7)) every 20, "" u (s($4/$7)) every 20,\

"" u (s($5/$7)) every 20, "" u (s($3/$7)) every 20


set style data parallelaxes
unset key
unset border; unset ytics
set paxis 1 tics 5
set paxis 2 tics .02
set paxis 3 tics .02
set paxis 4 tics .01
set paxis 5 tics .001 offset 5
s(x) = x**.5
set datafile sep tab
set xtics ("%% Minors without HS" 1, "Larceny" 2,\
   "MV Theft" 3,"Robbery" 4, "Murder" 5)
plot "census.dat" u 6 every 20, "" u (s($2/$7)) every 20, "" u (s($4/$7)) every 20,\
    "" u (s($5/$7)) every 20, "" u (s($3/$7)) every 20
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Before we return to the issue of revealing structure in the data, it is sometimes useful
to force some of the axes to have their tics’ values aligned. To do this, give the axes in
question the same range and tic specification. We’ve repeated the previous plot here,
forcing the Larceny and MV Theft axes to be aligned. Note that gnuplot will not extend a
paxis beyond the data, no matter how you set the range and tics, unlike a normal x- or
y-axis. This is why the third axis in this example plot is shorter than the others.

set style data parallelaxes

unset key

unset border; unset ytics

set paxis 1 tics 5

set paxis 2 tics .02

set paxis 3 tics .02

set paxis 4 tics .01

set paxis 5 tics .001 offset 5

set paxis 2 range [0: 0.21]

set paxis 3 range [0: 0.21]

s(x) = x**.5

set datafile sep tab

set xtics ("%% Minors without HS" 1, "Larceny" 2,\

"MV Theft" 3,"Robbery" 4, "Murder" 5) nomirror

plot "census.dat" u 6 every 20, "" u (s($2/$7)) every 20, "" u (s($4/$7)) every 20,\

"" u (s($5/$7)) every 20, "" u (s($3/$7)) every 20


set style data parallelaxes
unset key
unset border; unset ytics
set paxis 1 tics 5
set paxis 2 tics .02
set paxis 3 tics .02
set paxis 4 tics .01
set paxis 5 tics .001 offset 5
set paxis 2 range [0: 0.21]
set paxis 3 range [0: 0.21]
s(x) = x**.5
set datafile sep tab
set xtics ("%% Minors without HS" 1, "Larceny" 2,\
    "MV Theft" 3,"Robbery" 4, "Murder" 5) nomirror
plot "census.dat" u 6 every 20, "" u (s($2/$7)) every 20, "" u (s($4/$7)) every 20,\
    "" u (s($5/$7)) every 20, "" u (s($3/$7)) every 20
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One way to reveal structure in the data is to color datapoints by value. We’ve done this in
other types of plots, using the linecolor pal clause in the plot or splot commands.
In a parallel axis plot this will assign colors, taken from the active palette, to the lines
according to the value in an extra column in the using clause. In this example we are
coloring the data according to the value on the Larceny axis, using the default rainbow
palette. Notice how this simple coloring of the data turns the undifferentiated mass of our
first parallel axis plot above into a plot in which we can see some patterns, even though,
as in the first graph, all of the data is plotted. In order for coloring based on values to
work with the new parallel axis syntax, the color specification must be in the first part of
the plot command, in the second field, although it can refer to any columns, as you can
see in the last line of the script below.

set style data parallelaxes

unset key

unset colorbox

unset border; unset ytics

set paxis 1 tics 5

s(x) = x**.5

set datafile sep tab

set xtics ("%% Minors without HS" 1, "Larceny" 2, "MV Theft" 3,"Robbery" 4, "Murder" 5) nomirror

plot "census.dat" u 6:(s($2/$7)) lc pal, "" u (s($2/$7)), "" u (s($4/$7)), "" u (s($5/$7)), "" u (s($3/$7))


set style data parallelaxes
unset key
unset colorbox
unset border; unset ytics
set paxis 1 tics 5
s(x) = x**.5
set datafile sep tab
set xtics ("%% Minors without HS" 1, "Larceny" 2, "MV Theft" 3,"Robbery" 4, "Murder" 5) nomirror
plot "census.dat" u 6:(s($2/$7)) lc pal, "" u (s($2/$7)), "" u (s($4/$7)), "" u (s($5/$7)), "" u (s($3/$7)) 
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Another technique often used with parallel coordinate plots is to take the data falling
within a particular, narrow range along a particular dimension, and give it a color or
another visual attribute that contrasts with the data outside that range. In this way you
can visualize the data within a narrow slab of dimension N-1 inside the N-dimensional
space. Another useful visualization technique, particularly useful when plotting many
data points, is to make make the lines partially transparent, allowing you to see behind
them. In this example we use both techniques. First we define two linetypes with rather
high transparency values of 0xFA; linetype 8 will be red and linetype 9 will be blue (to
review the details of the various ways to define colors in gnuplot, type help colorspec

at the interactive prompt). The clause linecolor var in a plot command colors whatever
is being plotting according to an extra column in the using clause; but, instead of taking
the colors from the palette, it uses the value in the extra column to select a linetype.
Our extra column checks the value of the Robbery dimension (normalized by county
population); if it is less than .0004, it evaluates to 9 (blue lines); otherwise, to 8 (red lines),
using gnuplot’s ternary syntax. Whether this plot, or the previous ones in this chapter,
actually provide any insight into the data behind them, I’ll leave to the judgement of the
reader.

set style data parallelaxes

unset key

unset border; unset ytics

set paxis 1 tics 10

set lt 8 lc "#faff0000"

set lt 9 lc "#fa0000ff"

set paxis 1 tics 5

s(x) = x**.5

set datafile sep tab

set xtics ("%% Minors without HS" 1, "Larceny" 2, "MV Theft" 3,"Robbery" 4, "Murder" 5)

plot "census.dat" u 6:($5/$7 < 0.0004 ? 9 : 8) lc var, "" u (s($2/$7)), "" u (s($4/$7)), "" u (s($5/$7)), "" u (s($3/$7))


set style data parallelaxes
unset key
unset border; unset ytics
set paxis 1 tics 10
set lt 8 lc "#faff0000"
set lt 9 lc "#fa0000ff"
set paxis 1 tics 5
s(x) = x**.5
set datafile sep tab
set xtics ("%% Minors without HS" 1, "Larceny" 2, "MV Theft" 3,"Robbery" 4, "Murder" 5)
plot "census.dat" u 6:($5/$7 < 0.0004 ? 9 : 8) lc var, "" u (s($2/$7)), "" u (s($4/$7)), "" u (s($5/$7)), "" u (s($3/$7)) 
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Spider Plots

Version 5.4 of gnuplot includes a new type of graph, called a spider plot or radar chart. We are including it in this chapter
because it can be thought of as a variation of the parallel axis plot, where the axes, rather than being parallel, are arranged
so that they all intersect at a common point, with equal angles between them.

Like parallel axis plots, spider plots are often used to represent multivariate data, and in a similar fashion. However, their
use for this purpose is frowned upon by many writers on the subject of data visualization. However, gnuplot’s spider splot
provides an easy way to construct certain types of diagrams. Also, these graphs can be excellent visualizations when the
circular arrangement is meaningful, such as when compass directions are represented on the graph.

https://blog.scottlogic.com/2011/09/23/a-critique-of-radar-charts.html
http://www.thefunctionalart.com/2012/11/radar-graphs-avoid-them-999-of-time.html
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Here we use gnuplot’s spiderplot commands to create a geometrical illustration. This is a
quick and easy way of creating diagrams like this one, which illustrates a geometrical fact
about the sizes of inscribed hexagons and triangles. Because, for this plot, the treatment
of all the axes is the same, we can use a somewhat more concise version of the plot
command that uses iteration. The command newspiderplot begins a new polygon.

set spiderplot

set for [p=1:6] paxis p range [0:100]

set paxis 4 tics 500 font ",8"

$spidey << EOD

100 100 100 100 100 100

50 50 50 50 50 50

EOD

plot for [i=1:3] $spidey u i lw 4 lc "orange", newspiderplot,\

for [i=1:6] $spidey u i lw 4 lc "blue"


set spiderplot
set for [p=1:6] paxis p range [0:100]
set paxis 4 tics 500 font ",8"
$spidey << EOD
100 100 100 100 100 100
50 50 50 50 50 50
EOD
plot for [i=1:3] $spidey u i lw 4 lc "orange", newspiderplot,\
   for [i=1:6] $spidey u i lw 4 lc "blue"
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To illustrate a somewhat different style of spider plot, using overlapping, transparent polygons, we will create a visual-
ization of some recent COVID-19 data. To make the script more convenient to write, we’ve extracted a small subset of the
data, pertaining to the confirmed case rates for six countries on June 12th and July 12th, 2020, and arranged the data like this:

Italy, United States, Honduras, France, Canada, Switzerland

3905.638, 6112.782, 774.286, 2383.218, 2583.822, 3577.396

4016.203, 9811.656, 2784.865, 2615.946, 2843.902, 3779.832

Those numbers are the positive cases per onemillion people, in the six countries listed on the first row, on the two different
dates mentioned.

In the following plot, the data for June 12th is shown in purple, and the green area shows the data a month later. One can
immediately see that four of the countries experienced a very small growth in the number of cases, whereas the U.S. and
Honduras show a much faster growth. Finally, the plot makes it clear that the confirmed case percentage is much larger in
the U.S. than in the other countries shown.

https://ourworldindata.org/covid-cases
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Of the six axes for the six countries, we only need tics on one of them; this is accomplished
with the fifth and sixth lines in the script. The following, highlighted, line, causes the
fillstyle of the polygons formed by the data to have a solid, transparent color, bounds
themwith a border, and asks for open circles (pointtype 6) with a pointsize of 1.2. The
next highlighted clause draws the grid, which is the set of grey lines that may resemble
a spiderweb; linetype -1 is a solid line. The data file must be stored on disk with the
name “spidey.dat”, and the loop combined with using i (abbreviated) just means to loop
through each of the six numbers on each line, creating a new polygon from each line. If
we wanted to skip some numbers, we could alter the loop here. The final two (highlighted)
words say to pick the axis labels from the first line of the file.

set title "COVID cases per million, 12Jun and 12Jul 2020\n" font "Times,16"

set spiderplot

set datafile sep comma

set for [p=1:6] paxis p range [0:10000]

set for [p=1:6] paxis p tics format ""

set paxis 4 tics 2000 font ",8" format "%g"

set style spiderplot fs transparent solid 0.3 border lw 1 pt 6 ps 1.2

set grid spider lt -1 lc "grey" lw 1

plot for [i=1:6] "spidey.dat" u i title columnhead


set title "COVID cases per million, 12Jun and 12Jul 2020\\n" font "Times,16"
set spiderplot
set datafile sep comma
set for [p=1:6] paxis p range [0:10000]
set for [p=1:6] paxis p tics format ""
set paxis 4 tics 2000 font ",8" format "%g"
set style spiderplot fs transparent solid 0.3 border lw 1 pt 6 ps 1.2
set grid spider lt -1 lc "grey" lw 1
plot for [i=1:6] "spidey.dat" u i title columnhead
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Most of our work with gnuplot up to now has involved commands that cause the program to draw lines, curves, surfaces,
or sets of objects such as markers based on values in a table of data or generated from functions. Along with this, gnuplot
will plot axes, labels, and other apparatuses to help in the interpretation of the visualization. In this chapter we learn how
to plot objects, which are rectangles, ellipses, circles, or polygons, with a specifiable size, shape, color, pattern, etc., at
specific locations. The objects are added to the graph when it is created with the plot or splot command; when working
interactively, each new plotting command will add the defined list of objects until they are unset. Objects can be used to add
information or decorations to a plot, or be used themselves to convey the plot’s main information content, as an alternative
to the conventional lines, surfaces, etc. Each object can (optionally) be assigned an integer tag, so that its properties can be
selectively changed or so that it can be unset (removed from the graph)

We’ve already had a preview of one common use of objects: defining a filled rectangle that sits behind the plot to create
a background color.

This chapter will also cover gnuplot’s arrows. Although arrows are most often used in concert with text labels, they fit
better in this chapter because they share so much syntax and behavior with objects.
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Rectangles
The default styles for rectangle objects are set with the set style rectangle command,
which is the first line of the following example script. It sets the default fill color to a
blue-green color with transparency (an alpha of 0x55), with no border. The second and
third lines create two partially overlapping rectangle objects. The from and to clauses
give the locations of the lower-left and upper-right corners, in the default axis coordinate
system. Object 3 is another rectangle, but here the default fill style is overridden with a
purple color. Object 4 uses the at specification, which sets the location of the center of
the rectangle, and uses graph coordinates to conveniently size the rectangle to be slightly
larger than the graph. A fill pattern (fs) is set (the test command will show you the
patterns supported by your terminal), and the behind clause places the rectangle behind
everything, so that it can serve as a background. The final plot command draws all the
defined objects along with the plot.

set style rectangle fc "#5500cccc" fs solid noborder

set object 1 rectangle from -10, -1 to -5, 0

set object 2 rectangle from -7, -.4 to 0, 0.4

set object 3 rectangle from -3, 0.2 to 5, 0.7 fc "#55cc00bb"

set object 4 rectangle at 0, 0 size graph 1.3, 1.3 fc "#ff9999"\

fs pattern 5 behind

plot sin(x)


set style rectangle fc "#5500cccc" fs solid noborder
set object 1 rectangle from -10, -1 to -5, 0
set object 2 rectangle from -7, -.4 to 0, 0.4
set object 3 rectangle from -3, 0.2 to 5, 0.7 fc "#55cc00bb"
set object 4 rectangle at 0, 0 size graph 1.3, 1.3 fc "#ff9999"\
   fs pattern 5 behind
plot sin(x)
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Circles
In order to make a nice demonstration of circles it is convenient to make sure that the
graph is square, which is the purpose of the second line in this script. The do-loop,
which defines a dummy variable r, defines five circle objects, indexed by r, centered on 0,
0, and sized by a function of r (the size command sets the radius). Since we want this
script to produce the bulls-eye pattern shown, smaller circles need to be drawn on top
of larger ones; gnuplot draws the objects in index order, so we’ve make larger indices
have smaller radii. We’ve used the palette fraction command (abbreviated) to fill
each circle with a different color, using a fraction that goes from 0 to 1 as r goes from
1 to 5. This will select colors from the default rainbow palette, that goes from black to
yellow; 0 will select black, 1 will select yellow, 0.5 will select red, which is in the middle
of the palette, etc. We only want to draw the objects in this case; the trick to do this is to
enter a plot command that plots something outside of the range of the axes, triggering
the object drawing without plotting anything else.

unset key; unset colorbox

set size square

unset border; unset tics

set style fill solid 1 noborder

set xr [-1 : 1]

set yr [-1 : 1]

do for [r = 1 : 5]{

set obj r circle center 0, 0 size 1 - (r-1)/5.0 fc pal frac (r-1)/4.0

}

plot 10


unset key; unset colorbox
set size square
unset border; unset tics
set style fill solid 1 noborder
set xr [-1 : 1]
set yr [-1 : 1]
do for [r = 1 : 5]{
  set obj r circle center 0, 0 size 1 - (r-1)/5.0 fc pal frac (r-1)/4.0
}
plot 10
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We can use a construction of concentric circles, as in the previous example, to demarcate
regions for a polar plot, as an alternative to depending on the r-axis. This script defines
linetype 7 to be grey, and uses that definition in the set style fill command to set
the border color. The palette is defined to be a smooth gradient from a neutral grey to a
pinkish color. The cbrange is set to cover the range of values that we intend to plot, and
a loop similar to the one in the previous example defines the circle objects. In the final
polar plot, we can now read off the approximate values of the plotted function from the
concentric circles.

unset key

set size square

set lt 7 lc "grey"

set style fill solid 1.0 border lt 7

set xr [-1 : 1]

set yr [-1 : 1]

set pal def (0 "#555555", 0.7 "#aa5555", 1 "#ff5555")

set cbrange [0 : 1]

do for [r = 1 : 5]{

set obj 6 - r circle center 0, 0 size r/5.0 fc pal frac (r-1)/4.0

}

set polar

unset raxis

plot .5 + .05*sin(5.*t) lc "black" lw 2


unset key
set size square
set lt 7 lc "grey" 
set style fill solid 1.0 border lt 7
set xr [-1 : 1]
set yr [-1 : 1]
set pal def (0 "#555555", 0.7 "#aa5555", 1 "#ff5555")
set cbrange [0 : 1]
do for [r = 1 : 5]{
  set obj 6 - r circle center 0, 0 size r/5.0 fc pal frac (r-1)/4.0
}
set polar
unset raxis
plot .5 + .05*sin(5.*t) lc "black" lw 2
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A Pie Chart
Pie charts are not often used in technical exposition, and so are not part of gnuplot’s
standard repertoire. However, they have their place, and, with a little coaxing, you can
convince gnuplot to create them. Our approach will be to make a pie chart out of circle
objects; this example is really a way to introduce the arc clause of the set object

circle command. When you specify an arc, then, instead of a full circle, a wedge is
drawn that starts at the first number in the arc range and runs counterclockwise to the
second number; the numbers give the angles in degrees, starting parallel to the x-axis. In
order to make the wedges fit together without gaps or overlaps, the ending angle of each
wedge is equal to the starting angle of the next one. As in some previous examples in
this chapter, we need to issue a “dummy” plot command in order to actually draw these
objects.

unset key

unset tics

set style fill solid 1 noborder

set obj 1 circle at graph .65,.56 size graph .25 fc "blue" arc [0:30]

set obj 2 circle at graph .5,.5 size graph .25 fc "red" arc [30:80]

set obj 3 circle at graph .5,.5 size graph .25 fc "orange" arc [80:180]

set obj 4 circle at graph .5,.5 size graph .25 fc "green" arc [180:280]

set obj 5 circle at graph .5,.5 size graph .25 fc "sandybrown"\

arc [280:360]

set label at graph .19, .85 "Non-blues"

set label at graph .8, .8 "Blues"

plot [0:1][0:1] -1


unset key
unset tics
set style fill solid 1 noborder
set obj 1 circle at graph .65,.56 size graph .25 fc "blue" arc [0:30] 
set obj 2 circle at graph .5,.5 size graph .25 fc "red" arc [30:80] 
set obj 3 circle at graph .5,.5 size graph .25 fc "orange" arc [80:180] 
set obj 4 circle at graph .5,.5 size graph .25 fc "green" arc [180:280] 
set obj 5 circle at graph .5,.5 size graph .25 fc "sandybrown"\
   arc [280:360]
set label at graph .19, .85 "Non-blues"
set label at graph .8, .8 "Blues"
plot [0:1][0:1] -1
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That worked fairly well for a one-off pie chart. But what if you find yourself in the
position of having to make these things regularly? Presumably, you will be presented
with a list of numbers and the need to turn them into a pie chart, and would prefer not to
have to type in the arc angles and individual circle object definitions manually each time.
Here is one way to automate the process using gnuplot’s looping construct along with its
array datatype. In the script below, we put a list of numbers to be plotted into the array
w; they are fractions of a whole, and add up to 1 (if they sum to less than 1, there will be
a missing piece of the pie, and if they add up to more than 1, the chart will be incorrect).
Then we loop through the data, creating a series of contiguous wedges that fill the circle
(remember that |w| gives the number of elements in w). Selecting the wedge colors from
the default palette produces contrasting colors, which is desirable for this type of chart.

unset key

unset tics

unset border

unset colorbox

set style fill solid 1 noborder

array w[5] = [.1, .4, .2, .15, .15]

oldarc = 0

do for [i = 1 : |w|]{

set object i circle at graph 0.5, 0.5 size graph 0.25\

fc pal frac (i-1.)/(|w|-1) arc [oldarc : oldarc + w[i]*360]

oldarc = oldarc + w[i]*360

}

plot [0:1][0:1] -1


unset key
unset tics
unset border
unset colorbox
set style fill solid 1 noborder
array w[5] = [.1, .4, .2, .15, .15]
oldarc = 0
do for [i = 1 : |w|]{
   set object i circle at graph 0.5, 0.5 size graph 0.25\
     fc pal frac (i-1.)/(|w|-1) arc [oldarc : oldarc + w[i]*360]
   oldarc = oldarc + w[i]*360
}
plot [0:1][0:1] -1
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We can go a step further, and turn the script into a more flexible tool, using gnuplot’s ability to use arguments passed on
the command line. If you save the following script in a file called “piechart” and invoke it with the line gnuplot -p -c

piechart ".1, .3, .2, .2, .2", a pie chart using those numbers will pop up. The script will use a list of numbers of any
length, which must be passed as a string; it uses the eval command, along with the string catenation operator ., to construct
the necessary command to create the array (the eval command simply takes a string and executes it as a command). The
words command counts the number of words in a string, and is used here to determine the length of the input array. To
make this really useful, it can easily modified to save the chart in a file.

unset key

unset tics

unset border

unset colorbox

set style fill solid 1 noborder

c = words(ARG1)

eval 'array w[' . c . '] = [' . ARG1 . ']'

print w

oldarc = 0

do for [i = 1 : |w|]{

set object i circle at graph 0.5, 0.5 size graph 0.25\
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fc pal frac (i-1.)/(|w|-1) arc [oldarc : oldarc + w[i]*360]

oldarc = oldarc + w[i]*360

}

plot [0:1][0:1] -1


unset key
unset tics
unset border
unset colorbox
set style fill solid 1 noborder
c = words(ARG1)
eval 'array w[' . c . '] = [' . ARG1 . ']'
print w
oldarc = 0
do for [i = 1 : |w|]{
   set object i circle at graph 0.5, 0.5 size graph 0.25\
     fc pal frac (i-1.)/(|w|-1) arc [oldarc : oldarc + w[i]*360]
   oldarc = oldarc + w[i]*360
}
plot [0:1][0:1] -1
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Ellipses
Another of gnuplot’s objects is the ellipse, which has a position (the location of its center),
a width, a height, and an angle. The angle is measured from the horizontal axis to the
ellipse’s longer (“major”) axis. This script defines 15 ellipse objects; they all have the same
size and center, but different angles. They are used to create a fancy visualization of the
current palette.

unset key; unset colorbox

unset border; unset tics

set size square

set lt 8 lc "#666666"

set style fill solid 1.0 border lt 8

set xr [-1 : 1]

set yr [-1 : 1]

do for [r = 1 : 15]{

set obj r ellipse center 0, 0 size .5,2 angle 12*r fc pal frac r/15.0

}

plot 10


unset key; unset colorbox
unset border; unset tics
set size square
set lt 8 lc "#666666"
set style fill solid 1.0 border lt 8
set xr [-1 : 1]
set yr [-1 : 1]
do for [r = 1 : 15]{
  set obj r ellipse center 0, 0 size .5,2 angle 12*r fc pal frac r/15.0
}
plot 10
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To help visualize the effects of the various keywords, here is a set of ellipses labeled by
object number. The example also shows how to set colors and patterns of individual
ellipses. Note that the fill pattern setting will have no effect unless you also set a fill color.

unset key; unset colorbox

set size square

set grid lt -1

set xr [0 : 10]

set yr [0 : 10]

set obj 1 ellipse at 2, 2 angle 0 size 1, 2

set obj 2 ellipse at 4, 2 angle 0 size 2, 1

set obj 3 ellipse at 2, 5 angle 45 size 2, 1

set obj 4 ellipse at 6, 6 angle 45 size 2, 2

set obj 5 ellipse at 4, 8 angle -20 size 2, 1

set obj 6 ellipse at 8, 2 angle 45 size 3, 1 fc "green" fs pattern 4

set obj 7 ellipse at 8, 8 angle 0 size 3, 1 fs solid .2 fc "red"

set label 1 "1" at 2, 2 center

set label 2 "2" at 4, 2 center

set label 3 "3" at 2, 5 center

set label 4 "4" at 6, 6 center

set label 5 "5" at 4, 8 center

set label 6 "6" at 8, 2 center

set label 7 "7" at 8, 8 center

plot -1


unset key; unset colorbox
set size square
set grid lt -1
set xr [0 : 10]
set yr [0 : 10]
set obj 1 ellipse at 2, 2 angle 0 size 1, 2
set obj 2 ellipse at 4, 2 angle 0 size 2, 1
set obj 3 ellipse at 2, 5 angle 45 size 2, 1
set obj 4 ellipse at 6, 6 angle 45 size 2, 2
set obj 5 ellipse at 4, 8 angle -20 size 2, 1
set obj 6 ellipse at 8, 2 angle 45 size 3, 1  fc "green" fs pattern 4
set obj 7 ellipse at 8, 8 angle 0 size 3, 1 fs solid .2 fc "red"
set label 1 "1" at 2, 2 center
set label 2 "2" at 4, 2 center
set label 3 "3" at 2, 5 center
set label 4 "4" at 6, 6 center
set label 5 "5" at 4, 8 center
set label 6 "6" at 8, 2 center
set label 7 "7" at 8, 8 center
plot -1
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This example shows how to set separate border and fill colors on individual ellipses.
It also shows the effect of the density parameter (the number following fs solid):

this does not affect the opacity of the fill, but rather its intensity, without changing
the intensity of the border. For example, the bottom-left ellipse has a purple border
and a purple fill, but the lower-intensity fill renders the border visible. To make the fill
transparent, you can use a color specification including an alpha, as in object 3. To make
fills transparent by default, use the command set style fill transparent solid

0.5, substituting the desired opacity for “0.5”; since the border will remain opaque, the
density parameter serves in this case both to set the opacity and the contrast between
border and fill. You can see an example of this here.

unset key; unset colorbox

set size square

set xr [0 : 10]

set yr [0 : 10]

set obj 1 ellipse at 5, 5 size 4, 6 fs solid 1 border lt 2lw 3 fc "red"

set obj 2 ellipse at 5, 5 size 6, 3 fs solid .3 border lc "green"\

lw 3 fc "red"

set obj 3 ellipse at 6, 6 size 6, 1 angle 30 fs solid 1 border\

lc "yellow" fc "#88880088"

set obj 4 ellipse at 3, 2 size 5, 2 fs solid .2 fc "purple"

plot -1


unset key; unset colorbox
set size square
set xr [0 : 10]
set yr [0 : 10]
set obj 1 ellipse at 5, 5 size 4, 6 fs solid 1 border lt 2lw 3 fc "red"
set obj 2 ellipse at 5, 5 size 6, 3 fs solid .3 border lc "green"\
  lw 3 fc "red"
set obj 3 ellipse at 6, 6 size 6, 1 angle 30 fs solid 1 border\
  lc "yellow" fc "#88880088"
set obj 4 ellipse at 3, 2 size 5, 2  fs solid .2 fc "purple"
plot -1
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Here’s an example that should help to make the effect of the density parameter clear.
It also shows how setting default styles affects the subsequent object definitions, but
not those already made: on the left is the default, with the border color the same as the
fill color; on the right the ellipses are drawn with border lt 0, which renders a black
border (terminal-dependent, but fairly standard). When the density = 1, a fill that has the
same color as the border renders the border indistinguishable. You might be wondering
why I wrote solid 1/7.0*(r-7) in the definition of the second set of objects rather
than just (r-7)/7.0: due to a bug in gnuplot, expressions in that location that begin
with a bracket are not understood.

unset key

unset border; unset tics

set lt 8 lc "#666666"

set xr [-1 : 3]

set yr [-1 : 1]

do for [r = 1 : 7]{

set obj r ellipse center 0, 0 size .5, 2 angle 26*r fc "purple"\

fs solid r/7.0

}

set style fill solid 1.0 border lt 0

do for [r = 8 : 14]{

set obj r ellipse center 2, 0 size .5, 2 angle 26*(r-7) fc "purple"\

fs solid 1/7.0*(r-7)

}

plot 10


unset key
unset border; unset tics
set lt 8 lc "#666666"
set xr [-1 : 3]
set yr [-1 : 1]
do for [r = 1 : 7]{
  set obj r ellipse center 0, 0 size .5, 2 angle 26*r fc "purple"\
    fs solid  r/7.0
}
set style fill solid 1.0 border lt 0
do for [r = 8 : 14]{
  set obj r ellipse center 2, 0 size .5, 2 angle 26*(r-7) fc "purple"\
    fs solid 1/7.0*(r-7)
}
plot 10
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Here is another example of using transparent fills. Note the build up of opacity in
overlapping shapes. The density parameter in the set style fill line has no effect as
long as the color specification (here fc "#8800ccaa") has a nonzero alpha value (here
0x88).

unset key

unset border; unset tics

set size square

set lt 8 lc "#666666"

set style fill solid 1.0 border lt 8

set xr [-1 : 1]

set yr [-1 : 1]

do for [r = 1 : 7]{

set obj r ellipse center 0, 0 size .5, 2 angle 26*r fc "#8800ccaa"

}

plot 10


unset key
unset border; unset tics
set size square
set lt 8 lc "#666666"
set style fill solid 1.0 border lt 8
set xr [-1 : 1]
set yr [-1 : 1]
do for [r = 1 : 7]{
  set obj r ellipse center 0, 0 size .5, 2 angle 26*r fc "#8800ccaa"
}
plot 10
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Ellipse Units
In one of our examples above you may have noticed that the ellipses actually change
shape a bit as they are drawn at different angles: the ones closer to 0° are fatter than the
ones close to 90°. This is because the graph is set to have a 1:1 aspect ratio (set size

square), but the xrange and yrange are different: hence a unit on the x-axis is a different
geometrical length than a unit on the y-axis. Although the ellipse position may be given
in any coordinate system, the size specification always refers to axis coordinates. The
default interpretation of the size command is the the first number (the “major” axis) uses
x-axis coordinates, while the second number (the “minor” axis) uses y-axis coordinates.
If these are scaled differently, then a size 1, 1 (for example) will not result in a circle
(but set object circle always will). To make the construction of ellipses simpler,
you can tell gnuplot to use x-coordinates or y-coordinates for both axes, with the units
commands, highlighted in the script below. The units xy is the default behavior.

unset key

set size square

set xr [0 : 5]

set yr [0 : 1]

set obj 1 ellipse at 1, 0.5 size 1, 1 units xy

set obj 2 ellipse at 2, 0.5 size 1, 1 units xx

set obj 3 ellipse at 2.5, 0.5 size 1, 1 units yy fs solid fc "#aa666666"

set label "1" at 1, 0.5 center

set label "2" at 2, 0.5 center

set label "3" font ",22" at 3.5, 0.5 center

plot -1


unset key
set size square
set xr [0 : 5]
set yr [0 : 1]
set obj 1 ellipse at 1, 0.5 size 1, 1 units xy
set obj 2 ellipse at 2, 0.5 size 1, 1 units xx
set obj 3 ellipse at 2.5, 0.5 size 1, 1 units yy fs solid fc "#aa666666"
set label "1" at 1, 0.5 center
set label "2" at 2, 0.5 center
set label "3" font ",22" at 3.5, 0.5 center
plot -1
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Polygons
The final gnuplot object is the polygon. You can define any number of vertices, by
either specifying the location of each vertex in any coordinate system, or by using the
convenient relative coordinates. This allows you to specify the location of each vertex as
an offset from the current vertex (remaining, always, in the same coordinate system). To
use absolute positions, you say set obj polygon from $x_1, y_1$ to $x_2, y_2$

to $x_3, y_3$, etc.; while to use relative positions, just use rto rather than to. We use
relative positions in this example, which creates a filled polygon to use as a decorative
background for a label. One huge advantage of using relative positions is that the shape
is portable: to move it to a different location, you just need to change the first set of
coordinates, and need not recalculate all the others. If you supply a list of vertices that
does not close the polygon, gnuplot will output a warning and close it for you by drawing
a final line to the first vertex — we’ve exploited that here to save typing.

unset key

set style fill solid 1 noborder

set xr [0:4]

set obj 1 poly from graph .2, .5 rto 0.3, 0 rto .2, .2 rto -.2, .2\

rto -.3, 0 rto -.2, -.2 fc "#00cccc" behind

set label at graph .22, .72 "f(x) = e^x" font "Helvetica, 26"

plot exp(x) lw 2


unset key
set style fill solid 1 noborder
set xr [0:4]
set obj 1 poly from graph .2, .5 rto 0.3, 0 rto .2, .2 rto -.2, .2\
   rto -.3, 0 rto -.2, -.2 fc "#00cccc" behind
set label at graph .22, .72 "f(x) = e^x" font "Helvetica, 26"
plot exp(x) lw 2
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3D Polygons

One of the features added in v.5.4 is the extension of polygons to 3D space, or, more precisely, sets of closed 2D polygons
positioned in 3D. There are two different ways to construct the plots, that produce different effects.

In the first way, a list of vertex positions, defining a set of polygons, is plotted with a new command, splot <$vertices>

with polygons. This colors all the polygons identically, so either transparency or ambient lighting is required to create a
legible shape.

The second way is more powerful, because it allows different colors and opacities to be applied to each polygon. This
method uses gnuplot’s new polygon object type. Instead of a block of coordinates, required when using the first method,
we define a list of objects, as in the use of polygons described in previous sections. This is the method illustrated in the
following example.
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The six polygon objects defined in this script are arranged to form a box with the top
partially open. The coloring of 3D polygons is done using pm3d surfaces, sowe use settings
that control their behavior. The first line tells gnuplot to fill objects with a solid color
of opacity 0.8, which is slightly transparent. In the subsequent set object commands,
depthorder ensures that the parts of the polygon farther from the “eye” will be drawn
before the closer bits, so that the perspective rendering will work. Each command defines
the vertices (x, y, x positions) of a rectangle and its color. After defining the objects, they
will be drawn to accompany any splot command until they are undefined. So to plot
the objects alone, we can plot a surface “off the screen”, as we did above when using the
plot command.

unset key

set xr [0 : 1]

set yr [0 : 1]

set zr [0 : 2]

set style fill transparent solid 0.8

set obj 1 polygon from 0,0,0 to 1,0,0 to 1,1,0 to 0,1,0 to 0,0,0\

depthorder fc "blue"

set obj 2 polygon from 0,0,0 to 0,0,1 to 1,0,1 to 1,0,0 to 0,0,0\

depthorder fc "#AAAA00"

set obj 3 polygon from 1,0,0 to 1,1,0 to 1,1,1 to 1,0,1 to 1,0,0\

depthorder fc "#33AAAA"

set obj 4 polygon from 0,0,0 to 0,1,0 to 0,1,1 to 0,0,1 to 0,0,0\

depthorder fc "#CC0066"

set obj 5 polygon from 0,1,0 to 0,1,1 to 1,1,1 to 1,1,0 to 0,1,0\

depthorder fc "#33FF66"

set obj 6 polygon from 0,0,1 to 0,1,1 to 1,1,1.5 to 1,0,1.5 to 0,0,1\

depthorder fc "#AAAAAA"

splot -1


unset key
set xr [0 : 1]
set yr [0 : 1]
set zr [0 : 2]
set style fill transparent solid 0.8
set obj 1 polygon from 0,0,0 to 1,0,0 to 1,1,0 to 0,1,0 to 0,0,0\
    depthorder fc "blue"
set obj 2 polygon from 0,0,0 to 0,0,1 to 1,0,1 to 1,0,0 to 0,0,0\
    depthorder fc "#AAAA00"
set obj 3 polygon from 1,0,0 to 1,1,0 to 1,1,1 to 1,0,1 to 1,0,0\
    depthorder fc "#33AAAA"
set obj 4 polygon from 0,0,0 to 0,1,0 to 0,1,1 to 0,0,1 to 0,0,0\
    depthorder fc "#CC0066"
set obj 5 polygon from 0,1,0 to 0,1,1 to 1,1,1 to 1,1,0 to 0,1,0\
    depthorder fc "#33FF66"
set obj 6 polygon from 0,0,1 to 0,1,1 to 1,1,1.5 to 1,0,1.5 to 0,0,1\
    depthorder fc "#AAAAAA"
splot -1
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Arrows

Arrows are defined similarly to objects, with an optional index number, and also appear when a plot command is issued. You
define an arrow by giving its starting and ending coordinates, the usual line properties, and several parameters that define
the appearance of the arrowhead. More specifically, after a size keyword you supply three numbers: the arrowhead width
(in any coordinate system), the angle of the front sides of the arrowhead with the shaft, and (optionally) the angle of the back
sides. They keywords filled or noborder fills the arrowhead with the current linecolor; the latter should be used when
using a dashed line for the arrow. The filled keyword adds a border to the arrowhead, but since it’s drawn in the same
color as the fill, it simply makes the arrowhead larger. However, when using a dashed arrow, the resulting dashed border is a
mess, and must be eliminated. You might as well avoid this quirk by simply never using the filled keyword. Another style
is created with the empty keyword, which draws an unfilled arrowhead. The third parameter, for setting the back angle, is
ignored unless one of these keywords is present. The heads keyword draws an arrowhead at both sides of the arrow.
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This example script draws six arrows that demonstrate the important settings introduced
above. Next to each arrow, the script prints a label that shows the parameters used in
creating it.

unset key

set xr [0: 20]

set yr [4: 10]

set arrow 1 from 1, 9 to 9, 9 size 0.5, 20 filled

set arrow 2 from 1, 7 to 9, 7 size 1, 20 heads

set arrow 3 from 1, 5 to 9, 5 size 1, 20, 50 filled

set arrow 4 from 11, 9 to 19, 9 size 0.7, 20, 150 filled

set arrow 5 from 11, 7 to 19, 7 size 2, 20, 50 empty lt 6

set arrow 6 from 11, 5 to 19, 5 size 2, 20, 50 noborder lt 2 dt 7

set label at 1, 9.5 "size 0.5, 20 filled"

set label at 1, 7.5 "size 1, 20 heads"

set label at 1, 5.5 "size 1, 20, 50 filled"

set label at 11, 9.5 "size .7, 20, 150 filled"

set label at 11, 7.5 "size 2, 20, 50 empty lt 6"

set label at 11, 5.5 "size 2, 20, 50 noborder\n\n\nlt 2 dt 7"

plot -1


unset key
set xr [0: 20]
set yr [4: 10]
set arrow 1 from 1, 9 to 9, 9 size 0.5, 20 filled
set arrow 2 from 1, 7 to 9, 7 size 1, 20 heads
set arrow 3 from 1, 5 to 9, 5 size 1, 20, 50 filled
set arrow 4 from 11, 9 to 19, 9 size 0.7, 20, 150 filled
set arrow 5 from 11, 7 to 19, 7 size 2, 20, 50 empty lt 6
set arrow 6 from 11, 5 to 19, 5 size 2, 20, 50 noborder lt 2 dt 7
set label at 1, 9.5 "size 0.5, 20 filled"
set label at 1, 7.5 "size 1, 20 heads"
set label at 1, 5.5 "size 1, 20, 50 filled"
set label at 11, 9.5 "size .7, 20, 150 filled"
set label at 11, 7.5 "size 2, 20, 50 empty lt 6"
set label at 11, 5.5 "size 2, 20, 50 noborder\\n\\n\\nlt 2 dt 7"
plot -1
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This example draws an arrow labeled to make a convenient reference for the three
parameters that follow the size keyword. It also demonstrates how you can use a 90°
arrowhead to make a line with end caps, used for such things as indicating lengths, as
we do here. Notice that gnuplot draws arrowheads slightly narrower than the advertised
width.

unset key

set xr [0 : 1]

set yr [0 : 1]

s = 0.4

set arrow 1 from .1, .5 to .9, .5 size s, 20, 50 empty lw 3 lt 3

set label at .5, .55 "50°" font "Courier, 14"

set arrow 2 from 0.6, .5 to 1, .5 nohead dt 2

set label at 0.63, .45 "20°" font "Courier, 14"

set arrow 3 from 0.4, 0.5 - s/2 to 0.4, 0.5 + s/2\

size 0.2, 90 heads dt 7

set label at .2, 0.5 center "size " . gprintf("%g", s)\

font "Courier, 14" rotate by 90

plot -1


unset key
set xr [0 : 1]
set yr [0 : 1]
s = 0.4
set arrow 1 from .1, .5  to .9, .5 size s, 20, 50 empty lw 3 lt 3
set label at .5, .55 "50°" font "Courier, 14"
set arrow 2 from 0.6, .5 to 1, .5 nohead dt 2
set label at 0.63, .45 "20°" font "Courier, 14"
set arrow 3 from 0.4, 0.5 - s/2  to 0.4, 0.5 + s/2\
   size 0.2, 90 heads dt 7
set label at .2, 0.5 center "size " . gprintf("%g", s)\
   font "Courier, 14" rotate by 90
plot -1
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A Better Inset Plot
Here we show how to use an object and an arrow to make a better version of the inset
plot that we created a couple of chapters ago. This example uses an ellipse to demarcate
the area of the plot that we intend to magnify, and an arrow to point from there to the
magnified inset.

set multi

set object ellipse center .13, 0 size .4, 4

set arrow from .1, 2.1 to screen .29, .49 size screen 0.07, 20\

filled front lt 3 lw 2

set samples 1000

set grid lt -1 dt "_ "

set xtics 1

set ytics 10

plot [0:2*pi] exp(x)*sin(1/x)

set origin .25, .5

set size .4, .3

clear

unset grid

unset object

unset arrow

unset key

set xtics .05

set ytics 1

plot [0:.2] exp(x)*sin(1/x)


set multi
set object ellipse center .13, 0 size .4, 4
set arrow from .1, 2.1 to screen .29, .49 size screen 0.07, 20\
   filled front lt 3 lw 2
set samples 1000
set grid lt -1 dt "_ "
set xtics 1
set ytics 10
plot [0:2*pi] exp(x)*sin(1/x)
set origin .25, .5
set size .4, .3
clear
unset grid
unset object
unset arrow
unset key
set xtics .05
set ytics 1
plot [0:.2] exp(x)*sin(1/x)
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3D Pixmaps

A new concept in gnuplot, the pixmap, is an image object that is placed at a fixed location in a 2D or 3D plotting space.
Pixmaps can be used for logos, backgrounds, or as illustrative labels attached to positions on a graph. In the example below,
we show how to use pixmaps place informative labels at specific locations on a surface.

Suppose a planetary scientist has a model of some property of planets in the solar system, described by the function f,
depending on two variables. A plot of f would be a surface. We can label various locations on this surface with pictures of
the planets that those locations correspond to, using pixmaps.

The example below uses some cartoons of planets are that included in the supplement.zip file that is available for
download on the same page were you downloaded the book file. They are used here courtesy of Vecteezy.

https://www.vecteezy.com/free-vector/planet
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The new commands in this script are the set pixmap commands, which define objects
that are plotted with subsequent plot or splot commands, as in the other examples in
this chapter. The final three words in these commands set the width of the pixmap to be
0.06 of the total width of the graph; some trial and error was needed to find a good size
here. A larger than usual size for the PNG image is used to maintain a good resolution
for the pixmaps.

set term pngcairo size 1920, 1440

set iso 50; set samp 50

set hidden3d

set view 67, 74

f(x,y) = exp(x/5.)*cos(y/3.)

set pixmap 1 "earth.png" at 5, 5, f(5, 5) width screen 0.06

set pixmap 2 "saturn.png" at -7, -9, f(-7, -9) width screen 0.06

set pixmap 3 "jupiter.png" at 10, -10, f(10, -10) width screen 0.06

set pixmap 4 "uranus.png" at 3, -6, f(3, -6) width screen 0.06

set pixmap 5 "pluto-yesPluto.png" at -9, 0, f(-9, 0) width screen 0.06

set pixmap 6 "mars.png" at -6, 6, f(-6, 6) width screen .06

unset key

set xlab "Variable 1" rot parallel font ",22"

set ylab "Another planetary variable" rot parallel font ",22"

set zlab "f(x, y)" rot parallel font ",22"

set xtics font ",16"

set ytics font ",16"

set ztics font ",16"

splot f(x, y)


set term pngcairo size 1920, 1440
set iso 50; set samp 50
set hidden3d
set view 67, 74
f(x,y) = exp(x/5.)*cos(y/3.)
set pixmap 1 "earth.png" at 5, 5, f(5, 5) width screen 0.06
set pixmap 2 "saturn.png" at -7, -9, f(-7, -9) width screen 0.06
set pixmap 3 "jupiter.png" at 10, -10, f(10, -10) width screen 0.06
set pixmap 4 "uranus.png" at 3, -6, f(3, -6) width screen 0.06
set pixmap 5 "pluto-yesPluto.png" at -9, 0, f(-9, 0) width screen 0.06
set pixmap 6 "mars.png" at -6, 6, f(-6, 6) width screen .06
unset key
set xlab "Variable 1" rot parallel font ",22"
set ylab "Another planetary variable" rot parallel font ",22"
set zlab "f(x, y)" rot parallel font ",22"
set xtics font ",16"
set ytics font ",16"
set ztics font ",16"
splot f(x, y)
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This chapter contains examples that don’t have an obvious place in any of the other chapters, along with some elaboration
of previous scripts and some further examples of things that you can do with gnuplot.

Our first example shows one way to make a bar graph that appears to be three-dimensional. While it is, in general, a bad
idea to represent 2D data using 3D perspective, and something that is almost never used in serious or technical reporting,
the dressing up in 3D of such things as bar charts is popular in journalistic or advertising contexts. You may find yourself
called upon to do such a thing, and wonder if you can cajole gnuplot into playing along. Here is one way to do it, based
partly on ideas from the Gnuplot Tricks website. We can’t use the built-in histogram style for this; instead, since we intend
to make 3D perspective shapes, we’ll leverage gnuplot’s splot command.

The latest version of gnuplot adds true 3D box plots, so this technique is probably no longer necessary. However, it might
be instructive, so we’ll leave it here.

http://gnuplot-tricks.blogspot.com/2009/06/3d-bargraphs-in-gnuplot-one-more-time.html
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3D Bars
In this script, we create each 3D bar from three different rectangles; the 3D effect is
completed by using ambient lighting. The data values are stored in the array “DD”; the
width of the bars is controlled by “w”, and the space between them by “p”. You would
probably want to add labels, and perhaps part of the bounding box. This script can easily
be turned into a command-line tool that accepts a list of data as an input parameter,
similarly to how we created pie-chart tool.

unset key; unset colorbox

unset border; unset tics

set pm3d lighting primary .5

s = 0; w = .9; p = 1.4

set pal def (0 "blue", 1 "blue")

set multiplot

set parametric; set isosample 2, 2

set view 65, 30

array DD[5] = [.2, .5, 1., .7, .6]

set xr [0 : 1.5*|DD|]; set yr [0 : |DD|]; set zr [0:1]

do for [i=1:|DD|] {

D = DD[i]

set urange [0:w]; set vrange [0:w]

splot u+s, v, D w pm3d

set urange [0:w]; set vrange [0:D]

splot u+s, 0, v w pm3d

splot w+s, u, v w pm3d

s = s + p

}


unset key; unset colorbox
unset border; unset tics
set pm3d lighting primary .5
s = 0; w = .9; p = 1.4
set pal def (0 "blue", 1 "blue")
set multiplot
set parametric; set isosample 2, 2
set view 65, 30
array DD[5] = [.2, .5, 1., .7, .6]
set xr [0 : 1.5*|DD|]; set yr [0 : |DD|]; set zr [0:1]
do for [i=1:|DD|] {
  D = DD[i]
  set urange [0:w]; set vrange [0:w]
  splot u+s, v, D w pm3d
  set urange [0:w]; set vrange [0:D]
  splot u+s, 0, v w pm3d
  splot w+s, u, v w pm3d
  s = s + p
}
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Plotting with Pictures
Gnuplot can place pictures on a plot along with, or instead of, its usual points, lines,
and objects. It can understand the common image formats, but the details depend on
how your version was compiled. For a list of the image type that your gnuplot believes
that it can handle, give it the command show datafile binary filetypes. If you
nevertheless get a message that gnuplot can’t read an image file that is on the list, you
may need to recompile it, ensuring that the libgd-dev (on Linux) package has been
installed. Here is the basic command for placing an image on the plot. The image, in
the file “plane.png”, which you can download from the publisher’s website, has pixel
dimensions 640 × 533; you can see how gnuplot plots the image as an array of pixels,
with the axes labeled appropriately. The keyword rgbalpha is \index{rgbalpha}{ used
for images with transparency, such as this one; use rgbimage for JPEGs, PNGs without
transparency, etc. The clause filetype = auto tells gnuplot to guess the image format
from the filename extension, but if your files have nonstandard names you can be more
specific. The angle unit can be specified in degrees (rot 45deg), radians with a bare
number (as we do here), or radians in units of π (0.5pi). The keywords dx and dy

give scaling factors for the image. Notice how the image transparency is preserved in
the overlapping regions. The animation techniques we learned before could easily be
combined with image plotting to create sprite animations within gnuplot.

unset key

plot "plane.png" binary filetype=auto with rgbalpha,\

"plane.png" binary filetype=auto center = (100, 150)\

dx = 1.5 dy = 0.25 rot = pi/2 with rgbalpha


unset key
plot  "plane.png" binary filetype=auto with rgbalpha,\
   "plane.png" binary filetype=auto center = (100, 150)\
   dx = 1.5 dy = 0.25 rot = pi/2 with rgbalpha
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This example script illustrates the commands for placing images with specified location,
scaling, and rotation on a graph in order to dress up a plot with a thematic decoration.
Since positioning depends on the image’s pixel dimensions, we define two variables in the
second line to hold half the number of pixels in the x- and y-directions. The ang(a, b)

function calculates the angle from the slope of the data (in the data array we’ve duplicated
the last element for convenience). In the first plot command we place a plane image
at each data point, rotated to indicate the direction to the following data point. We use
multiplot mode to plot the same data with a dotted line, adjusting the axis ranges to get
approximate alignment with the plane images. You can omit dy, in which case it is set
equal to dx.

set multi

set tmargin at screen .9

set rmargin at screen .9

set lmargin at screen .3

set bmargin at screen .3

unset key

xph = 320; yph = 267

array d[5] = [1, 3, 2, 4, 4]

ang(a, b) = atan(b - a) - pi/2

set for [n = 1 : |d|-1] xtics (sprintf("%d", 2013 + n) xph * n)

set for [n = 1 : |d|-1] ytics (sprintf("%d", 100 * d[n]) yph * d[n])

plot for [n = 1 : |d|-1] "plane.png" binary filetype=auto \

center=(xph * n, yph * d[n]) dx = 0.3 rot=ang(d[n], d[n + 1]) with rgbalpha

set yr [.5 : 4.5]

set xr [.5 : 4.5]

set xlab "Year" font "Helvetica, 18"

set ylab "Plane production" font "Helvetica, 18" offset -3

plot d with lines lw 5 dt "-"


set multi
set tmargin at screen .9
set rmargin at screen .9
set lmargin at screen .3
set bmargin at screen .3
unset key
xph = 320; yph = 267
array d[5] = [1, 3, 2, 4, 4]
ang(a, b) = atan(b - a) - pi/2
set for  [n = 1 : |d|-1] xtics (sprintf("%d", 2013 + n) xph * n)
set for  [n = 1 : |d|-1] ytics (sprintf("%d", 100 * d[n]) yph * d[n])
plot for [n = 1 : |d|-1] "plane.png" binary filetype=auto \
center=(xph * n, yph * d[n]) dx = 0.3 rot=ang(d[n], d[n + 1]) with rgbalpha
set yr [.5 : 4.5]
set xr [.5 : 4.5]
set xlab "Year" font "Helvetica, 18"
set ylab "Plane production" font "Helvetica, 18" offset -3
plot d with lines lw 5 dt "-"
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Pictures in 3D
You can place images in a 3D plot as well, in which case gnuplot will draw the image with
3D perspective. Simply use splot instead of plot, and provide a 3D coordinate. Rotation,
by default, is around an axis passing through the center of the image and perpendicular
to the x-y plane. For more details about other options for rotation in 3D (and 2D), try
help perpendicular and help rot.

unset key

set border 15

set zlabel "Altitude" rot by 90 font ",16" offset -1

set zr [0:1600]

set view 60,30

set xyplane 0

set xtics scale 0

set ytics scale 0

set xtics format ""

set ytics format ""

set grid lt 1 lc "green"

hs = 470; vs = 360.

scl(n) = 1. - n/8.

splot for [n = 0 : 3] "plane.png" binary filetype=auto\

center=(n*.5*hs, n*vs, n*vs) dx=scl(n) rot = -n/12.pi with rgbalpha


unset key
set border 15
set zlabel "Altitude" rot by 90 font ",16" offset -1
set zr [0:1600]
set view 60,30
set xyplane 0
set xtics scale 0
set ytics scale 0
set xtics format ""
set ytics format ""
set grid lt 1 lc "green"
hs = 470; vs = 360.
scl(n) = 1. - n/8.
splot for [n = 0 : 3] "plane.png" binary filetype=auto\
   center=(n*.5*hs, n*vs, n*vs) dx=scl(n) rot = -n/12.pi with rgbalpha
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Plotting with Characters
In previous chapters we have learned how to make scatterplots by plotting data using the
with points command, choosing the point type, size, and color. The plotting “point” can
also be any single character; as this includes Unicode and an optional font specification,
there are many possibilities. Here’s how it works (we are reusing a datafile that we used
in the chapter on errors and finance):

unset key

plot "candles" w points pt "☺" font ",24"


unset key
plot "candles" w points pt "☺" font ",24"
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Variable Pointtype
Not only the size and color, but the type of point in a with points plot can be taken
from the data itself. This is activated by using the var keyword, as in the example script
below. The size, type, and color of the points are taken from the third, fourth, and fifth
data columns, respectively.

unset key

plot "candles" w points ps var pt var lc var


unset key
plot "candles" w points ps var pt var lc var
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The sample Keyword
A recent and powerful addition to gnuplot is the sample keyword. We’ve already learned
how a command like plot [a : b] f(x) redefines the xrange to cover the range within
the brackets; the use of sample is similar but much more flexible. The presence of the
sample keyword, highlighted in the script here, plots the function following the range
specifier over that range, without changing the xrange of the plot. The second range
specifier (also highlighted) plots the second function over that range. The result a cleaner
method for producing the result that we previously handled using the ternary operator
and NaNs. Note that in the absence of the sample keyword, the first range specifier would
simply reset the xrange for the graph (which, in this case, would exclude the second part
of the plot command).

set xr [-20 : 20]

set label "Damping applied" at 4, -.6 font "Times"

set arrow from 3.9, -.6 to 0, 0 filled lc "grey40"

plot sample [-20 : 0] sin(x) notit,\

[0 : 20] exp(-x/5.)*sin(x) dt ".-" lw 2 title "Decay phase"


set xr [-20 : 20]
set label "Damping applied" at 4, -.6 font "Times"
set arrow from 3.9, -.6 to 0, 0 filled lc "grey40"
plot sample [-20 : 0] sin(x) notit,\
   [0 : 20] exp(-x/5.)*sin(x) dt ".-" lw 2 title "Decay phase"
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The sample keyword has a couple more powers that are available for data plots (from
files or the “+” or “++” special filenames). Both powers are used in the highlighted range
specifier in this script. A third number sets the sampling interval for that part of the plot
command, overriding the global set samples command; we use it here to put space
between the points. As in range commands, you can give a name to the sample variable
(here “x”) which allows you to use this name in the column specifiers rather than having
to type “$1”.

set samp 1000

set style data lines

set style line lw 4

set xr [0 : 10]

f(x) = cos(2*x) * sin(x)

scale(x) = abs(f(x)) + 0.4

plot sample [0 : 1] "+" u 1:(f(x)) lw 3 title "Early range", [5 : 6] f(x) lw 3 title "Middle range",\

[9 : 12] f(x) lw 3 title "Late range",\

[x = 0 : 10 : 0.1] "+" u 1:(f(x)):(scale(x)) w points lc "grey70" ps var pt 6 notitle


set samp 1000
set style data lines
set style line lw 4
set xr [0 : 10]
f(x) = cos(2*x) * sin(x)
scale(x) = abs(f(x)) + 0.4
plot sample [0 : 1] "+" u 1:(f(x)) lw 3 title "Early range", [5 : 6] f(x) lw 3 title "Middle range",\
  [9 : 12] f(x) lw 3 title "Late range",\
    [x = 0 : 10 : 0.1] "+" u 1:(f(x)):(scale(x)) w points lc "grey70" ps var pt 6 notitle
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Multiple, Overlapping 2D plots
Here is an example of a style that is sometimes used to compare a handful of probability
distributions, or similar things. Offsets in the vertical direction are used along with
transparency to keep everything visible while keeping the plot compact.

unset key

set ytics format ""

set xtics format ""

set yr [0:4]

set xr [-7 : 7]

set style function filledcurves

set style fill transparent solid .5

vs = 0.7

f1(x) = exp(-x**2/5)

f2(x) = f1(x+1)*(exp(-x**2/2) + sin(x)**2)

f3(x) = f1(x-2)*(exp(-x**2/3 + cos(2*x)**2))

f4(x) = f1(x+1)*(exp(-x**4) + 0.2*sin(x)**2)

f5(x) = f1(x-1)*(exp(-x**4/4))

plot f1(x) fc "#990088",\

f2(x) + vs fc "#0088cc",\

f3(x) + 2*vs fc "#55ff66",\

f4(x) + 3*vs fc "#ff6666",\

f5(x-1) + 4*vs fc "#bbbbdd"


unset key
set ytics format ""
set xtics format ""
set yr [0:4]
set xr [-7 : 7]
set style function filledcurves
set style fill transparent solid .5
vs = 0.7
f1(x) = exp(-x**2/5)
f2(x) = f1(x+1)*(exp(-x**2/2) + sin(x)**2) 
f3(x) = f1(x-2)*(exp(-x**2/3 + cos(2*x)**2))
f4(x) = f1(x+1)*(exp(-x**4) + 0.2*sin(x)**2)
f5(x) = f1(x-1)*(exp(-x**4/4))
plot f1(x) fc "#990088",\
     f2(x) + vs fc "#0088cc",\
     f3(x) + 2*vs fc "#55ff66",\
     f4(x) + 3*vs fc "#ff6666",\
     f5(x-1) + 4*vs fc "#bbbbdd"
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Fence Plots
Another way to display a set of 2D curves is to spread them out in a 3D space to make
what is sometimes called a fence plot. Gnuplot makes this convenient with its zerrorfill
style. This style allows you to draw a curve in 3D space and surround it with a filled
region, defined either by a pair of functions or data columns, both above (higher z) and
below (lower z) the curve. The filled region can serve to represent the error in a set of
measurements defined by the curve (hence the name zerrorfill), but can be drafted to
represent anything you want. Note that although this is a splot style, it apparently can’t
be used to add an error fill to a surface. There are two versions. The one we show here
uses five columns, for x, y, z, zmin, zmax; there is a less general version that uses a zdelta
in place of the separate zmin and zmax. You can set separate styles for the curve and the
filled region. Here is a simple example that shows what it does:

unset key

set grid ztics

set grid ytics

set grid xtics lt 3

set border 4095

set view 60, 170

set ytics 20

splot "+" u 1:($1**2):(1):(0.75):(1.25)\

with zerrorfill fc "blue" lc "red" lw 2


unset key
set grid ztics
set grid ytics
set grid xtics lt 3
set border 4095
set view 60, 170
set ytics 20
splot "+" u 1:($1**2):(1):(0.75):(1.25)\
   with zerrorfill fc "blue" lc "red" lw 2
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As promised in the title of this section, we now show how to use the zerrorfill style to
create a fence plot, using the same set of functions as we used above. The trick is to use
zmax for the set of functions or data lines you wish to plot, while setting z and zmin to
coincide and form the bottoms of the curves. You should include the depthorder setting
to ensure that the plots overlap correctly. Here, rather than specify a color for each curve,
we let gnuplot use its default sequence. Use x and y to space out the curves, and use a
transparent fill style with no border:

unset key

unset xtics

unset ytics

set yr [-12 : 15]

set xr [-5 : 25]

set style fill transparent solid .7 noborder

set style data zerrorfill

set pm3d depthorder

set xyplane at 0

set view 70, 10

vs = 5

f1(x) = exp(-x**2/5)

f2(x) = f1(x+1)*(exp(-x**2/2) + sin(x)**2)

f3(x) = f1(x-2)*(exp(-x**2/3 + cos(2*x)**2))

f4(x) = f1(x+1)*(exp(-x**4) + 0.2*sin(x)**2)

f5(x) = f1(x-1)*(exp(-x**4/4))

splot sample [u = -5 : 5] "+" u (u):(2*u):(0):(0):(f1(u)),\

[u = -5 : 5] "" u (u + vs):(2*u):(0):(0):(f2(u)),\

[u = -5 : 5] "" u (u + 2*vs):(2*u):(0):(0):(f3(u)),\

[u = -5 : 5] "" u (u + 3*vs):(2*u):(0):(0):(f4(u)),\

[u = -5 : 5] "" u (u + 4*vs):(2*u):(0):(0):(f5(u))


unset key
unset xtics
unset ytics
set yr [-12 : 15]
set xr [-5 : 25]
set style fill transparent solid .7 noborder
set style data zerrorfill
set pm3d depthorder
set xyplane at 0
set view 70, 10
vs = 5
f1(x) = exp(-x**2/5)
f2(x) = f1(x+1)*(exp(-x**2/2) + sin(x)**2) 
f3(x) = f1(x-2)*(exp(-x**2/3 + cos(2*x)**2))
f4(x) = f1(x+1)*(exp(-x**4) + 0.2*sin(x)**2)
f5(x) = f1(x-1)*(exp(-x**4/4))
splot sample [u = -5 : 5] "+" u (u):(2*u):(0):(0):(f1(u)),\
             [u = -5 : 5] ""  u (u + vs):(2*u):(0):(0):(f2(u)),\
             [u = -5 : 5] ""  u (u + 2*vs):(2*u):(0):(0):(f3(u)),\
             [u = -5 : 5] ""  u (u + 3*vs):(2*u):(0):(0):(f4(u)),\
             [u = -5 : 5] ""  u (u + 4*vs):(2*u):(0):(0):(f5(u))
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Mapping
Gnuplot comes with a file called “world.dat” that is a rough but usable outline of the
continents of Earth. Since our planet is approximately a sphere, plotting this file using
spherical mapping gets us a serviceable globe, especially if we plot latitude and longitude
lines, as we do here:

unset key

set mapping spherical

set angles degrees

set isosamples 30

set xrange [-1:1]

set yrange [-1:1]

unset tics

unset border

set parametric

set hidden3d

set urange [-90:90]

set vrange [0:360]

splot cos(u)*cos(v),cos(u)*sin(v),sin(u) with lines lt rgb "grey80",\

"world.dat" with lines lt 2 lw 2


unset key
set mapping spherical
set angles degrees
set isosamples 30
set xrange [-1:1]
set yrange [-1:1]
unset tics
unset border
set parametric
set hidden3d
set urange [-90:90]
set vrange [0:360]
splot cos(u)*cos(v),cos(u)*sin(v),sin(u) with lines lt rgb "grey80",\
      "world.dat" with lines lt 2 lw 2
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Of course the real utility of the world.dat file is to be able to plot geographic information
with the continents as background for reference. To do this, your data needs to be stored
as a function of latitude and longitude, in the format that gnuplot expects: south of the
equator is negative latitude, as is west of the Prime Meridian. In this example we plot
the world.dat file in 2D, which results in a cylindrical projection of the globe, along with
data from the included file “earthquakes.dat”, which contains data from the United States
Geological Survey on the locations and magnitudes of all the earthquakes in the world for
three days in January of 2012. The script sets the tics to be geographic, which translates
the numerical coordinates into index{geographic coordinates} more conventional notation
for plotting, and uses geographic formatting. For all the options available in formats
for latitudes and longitudes, type help geographic. We use transparent fill here both
to reveal the continent outlines underneath the data and to show, with the buildup of
opacity, when earthquake events coincide. The sixth column in the file is mapped to the
third column in the using specifier, with a scaling factor, to control the circle size; this is
the earthquake magnitude.

unset key

set xtics geographic

set ytics geographic

set xtics 60; set ytics 40

set xr [-180 : 180]

set yr [-100 : 100]

set format x "%D’%E"

set format y "%D’%N"

set grid

set title "Earthquakes Worldwide 20Jan2012 Through 22Jan2012"

set style fill transparent solid 0.4 noborder

plot "world.dat" with lines lt -1,\

"earthquakes.dat" using 4:3:(1.5*$6) with circles fc "red"


unset key
set xtics geographic
set ytics geographic
set xtics 60; set ytics 40
set xr [-180 : 180]
set yr [-100 : 100]
set format x "%D’%E"
set format y "%D’%N"
set grid
set title "Earthquakes Worldwide 20Jan2012 Through 22Jan2012"
set style fill transparent solid 0.4 noborder
plot "world.dat" with lines lt -1,\
      "earthquakes.dat" using 4:3:(1.5*$6) with circles fc "red"
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Arrow Axes
If you want to replace gnuplot’s border with something custom, you probably want to
employ arrows for the purpose. Here we replace the border box with a pair of arrows, to
create a plot style popular in the classroom. We use graph coordinates to make the arrow
specifications work independently of the axis ranges.

unset key; unset border

set ytics .2

set arrow from graph 0,0 to graph 0, 1.2 filled

set arrow from graph 0,0 to graph 1.2, 0 filled

set tmargin 5

set rmargin 20

# set border 3

set tics nomirror

set grid

plot airy(x) lw 2


unset key; unset border
set ytics .2
set arrow from graph 0,0 to graph 0, 1.2 filled
set arrow from graph 0,0 to graph 1.2, 0 filled
set tmargin 5
set rmargin 20
# set border 3
set tics nomirror
set grid
plot airy(x) lw 2



Lee Phillips: Gnuplot 5 2nd ed. A gnuplot Miscellany 314

Colorsequence
A recently added feature in gnuplot is the ability to choose from three options for the
colorsequence. The default is the familiar terminal-independent magenta - green
- cyan - etc. sequence; the classic option produces a terminal-dependent sequence,
usually beginning red - green - blue (this was the default in previous versions of gnuplot);
the podo option, that we illustrate in this example, selects a sequence of eight colors that
are easier for colorblind people to tell apart (see also the cubehelix palette).

set colorsequence podo

set samp 1000

set xr [0 : 9]

unset key

plot for [i = 1 : 8] sin(1/(x-i)) + i lw 2


set colorsequence podo
set samp 1000
set xr [0 : 9]
unset key
plot for [i = 1 : 8] sin(1/(x-i)) + i lw 2
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Colored Axes
As we’ve seen, you can use different scales for different curves on a plot by setting up
a second y- or x-axis. This requires you to then indicate which curves go with which
axes. You can use different colors or dash patterns, along with a legend, or use text labels,
perhaps in combination with arrows, for this purpose. Another option is illustrated in
this example: you can color the tic and axis labels, and use corresponding colors for the
curves. Gnuplot uses a single color for all the border lines, however.

set xr [-pi : pi]

unset key

set ytics nomirror

set y2tics nomirror tc lt 3

set ylab "sin(x)" font "Helvetica, 16"

set y2label "x^2" rot by 0 font "Helvetica, 16" tc lt 3

plot sin(x) lt -1, x**2 axis x1y2 lt 3


set xr [-pi : pi]
unset key
set ytics nomirror 
set y2tics nomirror tc lt 3
set ylab "sin(x)" font "Helvetica, 16"
set y2label "x^2" rot by 0 font "Helvetica, 16" tc lt 3
plot sin(x) lt -1, x**2 axis x1y2 lt 3
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A variation of the previous idea is to use a zeroaxis for one of the curves. This allows us
to color the axis as well, but, sadly, the tic marks themselves still inherit their color from
the border.

set border 3

unset key

set xr [-pi : pi]

set y2zeroaxis lt 3

set xtics nomirror

set ytics nomirror

set ylab "sin(x)" font "Helvetica, 16"

set label "x^2" font "Helvetica, 16" at -0.5, second 8 tc lt 3

set y2tics axis nomirror tc lt 3

plot sin(x) lt -1, x**2 axis x1y2 lt 3


set border 3
unset key
set xr [-pi : pi]
set y2zeroaxis lt 3
set xtics nomirror
set ytics nomirror
set ylab "sin(x)" font "Helvetica, 16"
set label "x^2" font "Helvetica, 16" at -0.5, second 8 tc lt 3
set y2tics axis nomirror tc lt 3
plot sin(x) lt -1, x**2 axis x1y2 lt 3
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In order to get the tic and axis labels, tic marks, and the border or axis line itself to all be
drawn in a specified color, we can resort to multiplot mode, as in the example here. To
get the plots to align, we set global margins using screen coordinates.

set multi

set tmargin at screen 0.9

set rmargin at screen 0.9

set lmargin at screen 0.1

set bmargin at screen 0.1

unset key

set xr [-pi : pi]

set tics nomirror

set border 8 lt 4

unset ytics

set y2tics 1

unset xtics

set y2label "x^2" rot by 0 font "Helvetica, 16" tc lt 4

plot x**2 axis x1y2 lt 4

set border 7 lt -1

unset y2label

set tics nomirror

unset y2tics

set ylab "sin(x)" font "Helvetica, 16"

plot sin(x) lt -1


set multi
set tmargin at screen 0.9
set rmargin at screen 0.9
set lmargin at screen 0.1
set bmargin at screen 0.1
unset key
set xr [-pi : pi]
set tics nomirror
set border 8 lt 4
unset ytics
set y2tics 1
unset xtics
set y2label "x^2" rot by 0 font "Helvetica, 16" tc lt 4
plot x**2 axis x1y2 lt 4
set border 7 lt -1
unset y2label
set tics nomirror
unset y2tics
set ylab "sin(x)" font "Helvetica, 16"
plot sin(x) lt -1
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Data Dependent Gridding
Gnuplot, by default, places the ticmarks at equally spaced intervals, with gridlines to
match. In cases where there we are plotting a moderate number of discrete data points, it
can be more useful to align the tics and grid lines with the data, allowing the viewer to
easily read off the exact data values without having to interpolate between tic values.

set samples 5

set key top left

set for [n = 1 : 4] arrow from first n, 0\

to first n, n**2 nohead dt "-"

set for [n = 1 : 4] arrow from first 1, n**2\

to first n, n**2 nohead dt "-"

set for [n = 1 : 5] ytics (n**2)

set xtics 1

plot [1 : 5] x**2 with linespoints pt 7 ps 2


set samples 5
set key top left
set for [n = 1 : 4] arrow from first n, 0\
   to first n, n**2 nohead dt "-"
set for [n = 1 : 4] arrow from first 1, n**2\
   to first n, n**2 nohead dt "-"
set for [n = 1 : 5] ytics (n**2)
set xtics 1
plot [1 : 5] x**2 with linespoints pt 7 ps 2
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Broken Axis
There is a style of plot that includes two disjoint ranges on the (for example) x-axis. The
break in the axis requires some type of marking to indicate the discontinuity in scale.
In this example we use multiplot mode to plot the two sides of the graph, margins in
screen coordinates to align the graphs, and headless arrows to form short line segments
to indicate the position of the axis break. A variation of this style would be to arrange for
one of the tic marks to fall at the location of the axis break and dispense with the arrow
markings. You can alter this example to achieve that effect by setting the xtic interval
for the first graph to 0.01 and to 0.05 for the second graph.

set multi

t = 0.015; s = 0.03

unset key

set samp 1000

set border 3; set xtics .02; set tics nomirror

set bmargin at screen 0.1; set tmargin at screen 0.9

set rmargin at screen 0.4; set lmargin at screen 0.1

set xr [.01 : 0.05]

set arrow 1 from screen .4, .1 to screen 0.4 + t, 0.1 + s nohead lw 1.5

set arrow 2 from screen .4, .1 to screen 0.4 - t, 0.1 - s nohead lw 1.5

plot sin(1/x)

set lmargin at screen 0.43; set rmargin at screen 0.9

set xr [0.1 : 0.3]

set key; set border 1; unset ytics; set xtics 0.06

set arrow 1 from screen 0.43, .1 to screen 0.43 + t, 0.1 + s nohead lw 1.5

set arrow 2 from screen 0.43, .1 to screen 0.43 - t, 0.1 - s nohead lw 1.5

plot sin(1/x)


set multi
t = 0.015; s = 0.03
unset key
set samp 1000
set border 3; set xtics .02; set tics nomirror
set bmargin at screen 0.1; set tmargin at screen 0.9
set rmargin at screen 0.4; set lmargin at screen 0.1
set xr [.01 : 0.05]
set arrow 1 from screen .4, .1 to screen 0.4 + t, 0.1 + s nohead lw 1.5
set arrow 2 from screen .4, .1 to screen 0.4 - t, 0.1 - s nohead lw 1.5
plot sin(1/x)
set lmargin at screen 0.43; set rmargin at screen 0.9
set xr [0.1 : 0.3]
set key; set border 1; unset ytics; set xtics 0.06
set arrow 1 from screen 0.43, .1 to screen 0.43 + t, 0.1 + s nohead lw 1.5
set arrow 2 from screen 0.43, .1 to screen 0.43 - t, 0.1 - s nohead lw 1.5
plot sin(1/x)
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Jitter
Often, data is gathered in a way that causes one or more variables to be “quantized,” rather
than to be continuously distributed. For example, some observation may be recorded
at particular time intervals, which would cause the observations to be clustered on the
time axis. This will cause the data points to overlap on a scatterplot, for example, which
would obscure some of the data. One way to overcome this is to add a small displacement,
random or otherwise, to the plotted data points, in order to spread them out and reveal
the obscured ones. Gnuplot has an automated, configurable mechanism for doing just
this, using the recently added jitter command. We’ll show how it works using some
artificial data. First, an example that illustrates the problem (the script uses the modulo
operator %, which gives the remainder after dividing by the right-hand operand: type
help expressions operators binary to see all of them): \index{%}

unset key

set grid lt -1

seed = rand(9)

plot sample [i = 0 : 99] "+" u (int(i)%10):(int(rand(0)*99)%10)\

pt 6 ps 3 lw 3


unset key
set grid lt -1
seed = rand(9)
plot sample [i = 0 : 99] "+" u (int(i)%10):(int(rand(0)*99)%10)\
    pt 6 ps 3 lw 3
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The previous example plotted some random points on a grid, but you can’t see all of
them, because some points overlap. To reveal the hidden data, use the jitter command
(help jitter will get you details on all the options, but the spread setting will cover
the majority of cases; any coordinate system can be used, with character as the default):

set jitter spread 0.2

unset key

set grid lt -1

seed = rand(9)

plot sample [i = 0 : 99] "+" u (int(i)%10):(int(rand(0)*99)%10)\

pt 6 ps 3 lw 3


set jitter spread 0.2
unset key
set grid lt -1
seed = rand(9)
plot sample [i = 0 : 99] "+" u (int(i)%10):(int(rand(0)*99)%10)\
    pt 6 ps 3 lw 3
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jitter also works with impulse plots. Here’s a similar set of data plotted with impulses.
We use the set offset command to add some extra space between the data and the
border:

unset key

set offset 0.3, 0.3

set grid

seed = rand(8)

plot sample [i = 0 : 20] "+" u (int(i)%10):(int(rand(0)*99))\

with impulses lw 2


unset key
set offset 0.3, 0.3
set grid
seed = rand(8)
plot sample [i = 0 : 20] "+" u (int(i)%10):(int(rand(0)*99))\
   with impulses lw 2



Lee Phillips: Gnuplot 5 2nd ed. A gnuplot Miscellany 323

In the previous plot, most of the data is obscured due to overlap. Adding a little jitter
reveals all the data:

unset key

set jitter spread 0.9

set offset 0.3, 0.3

set grid

seed = rand(8)

plot sample [i = 0 : 20] "+" u (int(i)%10):(int(rand(0)*99))\

with impulses lw 2


unset key
set jitter spread 0.9
set offset 0.3, 0.3
set grid
seed = rand(8)
plot sample [i = 0 : 20] "+" u (int(i)%10):(int(rand(0)*99))\
   with impulses lw 2
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Scatterplots of Dense Data Sets
A plot using unconnected points, dots, or symbols in the plane of data with separate
x- and y-values specified is called a “scatterplot.” In gnuplot these can be created using
the plot style with points. Scatterplots are useful to reveal several aspects of the data,
especially correlations between values on the two axes. But when there are many data
points and the data becomes dense in certain parts of the graph, the points overlap, and
you lose information about the density of points in the overlap region. This example
illustrates the phenomenon. The “data” is arranged so that there is an increasing density
as we approach (0, 0). But, although we’re using a small pointsize, the overlap almost
entirely hides the nature of the data.

unset key

set samp 600

set iso 600

set xr [0:5]

set yr [0:5]

e = 1.3

plot "++" u ($1 * rand(0)**e):($2 * rand(0)**e)\

with points pt 7 lc "#990099" ps .5


unset key
set samp 600
set iso 600
set xr [0:5]
set yr [0:5]
e = 1.3
plot "++" u ($1 * rand(0)**e):($2 * rand(0)**e)\
  with points pt 7 lc "#990099" ps .5
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We can improve on this significantly by using the plot style with dots, which places a
very small dot at each point (the smaller the dot, the less overlap we’ll get):

unset key

set samp 600

set iso 600

set xr [0:5]

set yr [0:5]

e = 1.3

plot "++" u ($1 * rand(0)**e):($2 * rand(0)**e) with dots


unset key
set samp 600
set iso 600
set xr [0:5]
set yr [0:5]
e = 1.3
plot "++" u ($1 * rand(0)**e):($2 * rand(0)**e) with dots
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The previous example still had enough overlap to obscure some of the data behavior. You
may be able to improve the plot in these situations by using nearly transparent, small
points. Overlapping points will build up opacity, naturally leading to smooth gradients in
density that match the data gradients. Experimenting with the alpha value and pointsize
will help to get an optimal visualization for any particular data set.

unset key

set samp 600

set iso 600

set xr [0:5]

set yr [0:5]

e = 1.3

plot "++" u ($1 * rand(0)**e):($2 * rand(0)**e)\

with points pt 7 lc "#fa990099" ps .5


unset key
set samp 600
set iso 600
set xr [0:5]
set yr [0:5]
e = 1.3
plot "++" u ($1 * rand(0)**e):($2 * rand(0)**e)\
  with points pt 7 lc "#fa990099" ps .5
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Attention to Style

Gnuplot has a reputation in some quarters for producing unattractive graphs. This is unfair, but due to the fact that gnuplot’s
default settings lead to output that, while utilitarian, can benefit from some aesthetic tweaking. This example is simply a
reminder that gnuplot allows you to use any fonts on your system, and is extremely customizable. A little attention to colors,
the judicious use of transparency, and careful selection of fonts, sizes, margins, and line styles, can lead to visualizations
limited in beauty only by your skill in design.
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If you don’t have one or both of the fonts that we call for in the following script, the
output from your machine will look different. This example also serves to illustrate
the set style textbox command. This command is evolving, and may give different
results, or not work at all, depending on your particular gnuplot version. It defines a
style for the boxed variant of a text label, which, by default, creates a black border.
One of its quirks is that, to get a partially transparent fill, as we show here, you must
use the opaque keyword, and use an alpha component for the fillcolor. If you say
transparent rather than opaque, that produces an box with no fill. Note also that the
only way to apply a detailed style to grid lines is with a user-defined linetype.

set border 3 lw 2 lc "grey40"

unset key

set samp 1000

set linetype 5 lc "grey80" lw 2 dt "-"

set grid lt 5

set xtics 4

set ytics 0.2

set tics font "Ubuntu Condensed, 16" tc "#555599"

set tics nomirror

set xr [-15 : 15]

set yr [-0.6 : 0.6]

set offsets 1

set style textbox opaque border rgb "#444444" lw 2 fc "#aa666666"\

margins 3, 2

set label "Airy function" font "Sawasdee, 18" at 3.5, 0.14 boxed

plot airy(x) lw 3 lc "#883433"


set border 3 lw 2 lc "grey40"
unset key
set samp 1000
set linetype 5 lc "grey80" lw 2 dt "-"
set grid lt 5
set xtics 4
set ytics 0.2
set tics font "Ubuntu Condensed, 16" tc "#555599"
set tics nomirror
set xr [-15 : 15]
set yr [-0.6 : 0.6]
set offsets 1
set style textbox opaque border rgb "#444444" lw 2 fc "#aa666666"\
                   margins 3, 2
set label "Airy function" font "Sawasdee, 18" at 3.5, 0.14 boxed
plot airy(x) lw 3 lc "#883433"
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Voxel plots

A voxel is the 3D analogue of the pixel. This type of visualization, completely new in gnuplot v. 5.4, allows the rendering
of data in 3D space. Voxel data are familiar in medical imaging, where they are used to display the results of MRIs or CAT
scans, and in engineering or physics, where they are helpful in understanding such things as the 3D flow pattern around
a propeller. Up to now, “3D” plotting in gnuplot was confined to rendering surfaces in various ways, drawing curves, or
placing points within the 3D space: in other words, 2D, 1D, or 0D objects embedded in a volume region. All these types of
plots are covered in previous chapters. Voxel plotting, in contrast, is true 3D visualization of 3D information; you can think
of it as the 3D version of a 2D heatmap. What this means will become clear with the examples in this chapter.

Another way to understand this is that a surface plot is a visualization of a function of two variables: 𝑧 = 𝑓 (𝑥, 𝑦). With
voxel plotting, we can now visualize functions of three variables: 𝑓 (𝑥, 𝑦 , 𝑧).

All voxel plotting begins with the establishment of a voxel grid, or vgrid. This is simply a regular cubic array of places
in which to store values. It is perhaps better to think of the volume as divided into an array of subvolumes, each of which
is filled with its local value, than as divided into an array of points. The command to set up a 100 × 100 × 100 grid, and give
it the name $v, is set vgrid $v size 100 (the names of voxel grids must start with a dollar sign). A new voxel grid is
initialized with 0 at every point.

If you want to reinitialize the vgrid after working with it, you must do unset vgrid $v, using whatever name you have
assigned it, and then enter set vgrid again; simply reentering set vgridwith the same dimensions will not zero the voxel
values. Another option is vclear, which zeroes the active grid, or a different one with an argument.
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Before we do any plotting with this grid, we want, as usual, to set the ranges on the axes; but now, there are two sets of
ranges: the usual xrange, etc., for the box that holds the plot, and new ones called vxrange, etc, for the coordinate extents
of the voxel grid. The voxel grid has an existence independent of the grids used to plot it, or the coordinate system in which
it is placed.

Now that we have our voxel grid, we need to fill it with values in order to have something to plot. It will be instructive
to use one example, with a simple physical interpretation, and show how to visualize it in several ways. Our example for
the rest of this chapter will be the potential field (“voltage”) surrounding two equal and opposite charges: an electric dipole.
This is a model, for example, of the potential field around a water molecule, if you are not too close to the molecule.

One of the capabilities recently added to gnuplot is the ability to store blocks of data in named variables. We’ll use this to
define a little data block that holds the locations of the two charges and their charge values. If we use a range of [0 : 1],
the command to create the data block can be

$charges << EOD

0 0 0.75 1

0 0 0.25 -1

EOD

In $charges, the first three columns are x, y, and z, so the charges are on the z-axis. The fourth column is for the charge
values.

After this, we can use $charges in any command where we need to refer to this data. Just by changing this command,

http://www1.lsbu.ac.uk/water/water_molecule.html
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you can alter all the examples in this chapter to plot the potential field surrounding any configuration of charges that you
want.

Now we need to do something with these coordinates, and that brings us to our second new command, vfill. This
command is a little confusing towrap your head around because it operates on two grids at once. It takes a grid of coordinates,
which need not be the same size as the voxel grid, and, for each point therein, finds all the points in the voxel grid that lie
within a given radius of the point. Each of these voxel locations gets a specified value added to it.

Proceeding with our example may make this more concrete. We’re going to use the vfill command to add the contribu-
tion to the potential field from each charge to the voxel grid. For this purpose, it will be convenient to have a function that
calculates that potential at a given distance from the charge:

pot(r) = r > 0 ? 1/r : 10^6

Here we have used gnuplot’s ternary notation, which borrows from c and other languages. The function pot will return
the usual potential for positive distances, but gives us an arbitrary large number if we are right on top of the charge, where
the potential would be infinite.

We can use this in a vfill command to populate the voxel grid this way:

vfill $charges using 1:2:3:(2):($4*pot(VoxelDistance))

This commandwill consider each charge in turn. For each charge, it will determine which voxels are within a radius of 2 of
the charge, and add to the value there the value of the potential. Gnuplot supplies the convenience function VoxelDistance,
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that returns the distance from each point in the voxel grid to the grid point under consideration. For the radius, we just
wanted to include every point in the grid, so we used a value larger than the largest distance within the cube (√3); anything
larger would have the same effect. This command, and all the plotting commands below that will refer to voxel values, use
the currently active voxel grid, which is the one most recently defined. As you can see, we’re not bothering with physical
constants or units; we are only interested in the shape of the potential field. If we want to, we can convert to physical units
at any time with a simple scaling.

To summarize, the command in general takes the form

vfill XYX-coordinates using x:y:z:(radius):(value)

Now that we have populated the voxel grid with values, we would naturally like to look at them, to see the configuration of
the potential field. Gnuplot gives us four distinct ways to do this, and they are all variations of the familiar splot command
for plotting surfaces. The examples in the rest of this chapter will show us how to use all of these new plot commands.

There is a new function, voxel(x, y, z) which returns the value stored in the active voxel grid at the specified 3D
location. \index{voxel function Note that the current release (version 5.4 patchlevel rc2) will crash with a segfault if you ask
for voxel(x, y, z) after initalizing the voxel grid but before adding any values with vfill.
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Plotting Points in 3D
The splot command can now plot a collection of points in 3D with their colors, sizes, and
types taken from any data source, as before in 2D; the voxel grid is simply an additional
source of data. So we can begin by making a picture showing the location of our charges,
without reference to the voxel grid at all. These examples, as in every chapter, are all
self-contained: you can run these scripts as-is in gnuplot (as long as you are using v. 5.4)
and they will produce the plot shown. That is the reason for the repeated setup in many
of the examples.

set urange [0:1]; set vrange [0:1]

set xrange [0:1]; set yrange [0:1]; set zrange [0:1]

set samp 100,100; set iso 100,100

set view 65,40

set xyplane at -0.1

set border 4095

unset key

$charges << EOD

0 0 0.75 1

0 0 0.25 -1

EOD

splot $charges using 1:2:3 with points pt 7 ps 5 lc pal


set urange [0:1]; set vrange [0:1]
set xrange [0:1]; set yrange [0:1]; set zrange [0:1]
set samp 100,100; set iso 100,100
set view 65,40
set xyplane at -0.1
set border 4095
unset key
$charges << EOD
0 0 0.75 1
0 0 0.25 -1
EOD
splot $charges using 1:2:3 with points pt 7 ps 5 lc pal
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Once a voxel grid is defined and made active with the set vgrid command, and filled with values using the vfill

command, you can visualize it in several ways. The first method we’re going to look at is a simple variation of the splot
command that draws a point in 3D space for each point in the voxel grid. You can color these points with a constant color
or with a palette. This command takes a clause above x; it will plot points only for voxel values greater than x. The default
value is 0, so if this is omitted you will get points only where the voxels are positive. Since you are limited to constant or
palette colors, and the command does not accept a using clause, this form of the splot command is limited. You can not
have variable colors with transparency, nor can you make the point sizes or types depend on the data; but we will see other
ways to do all these things later in the chapter.
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Here we use two splot...above commands to draw two nested volumes showing the
configuration of the potential near the negative charge.

set vgrid $v size 100

set vzrange [0:1]; set vyrange [0:1]; set vzrange [0:1]

set urange [0:1]; set vrange [0:1]

set xrange [0:1]; set yrange [0:1]; set zrange [0:1]

dx = 1.0/20

$charges << EOD

0 0 0.75 1

0 0 0.25 -1

EOD

pot(r) = r > 0 ? 1/r : 10^6

vfill $charges using 1:2:3:(2):($4*pot(VoxelDistance))

set xyplane at -0.1; set border 4095; unset key

splot $v with points above 5 pt 7 ps 0.2,\

$v with points above 10 pt 7 ps 0.2 lc "green"


set vgrid $v size 100
set vzrange [0:1]; set vyrange [0:1]; set vzrange [0:1]
set urange [0:1]; set vrange [0:1]
set xrange [0:1]; set yrange [0:1]; set zrange [0:1]
dx = 1.0/20
$charges << EOD
0 0 0.75 1
0 0 0.25 -1
EOD
pot(r) = r > 0 ? 1/r : 10^6
vfill $charges using 1:2:3:(2):($4*pot(VoxelDistance))
set xyplane at -0.1; set border 4095; unset key
splot $v with points above 5 pt 7 ps 0.2,\
    $v with points above 10 pt 7 ps 0.2 lc "green"
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This invocation of the splot command accepts a pointinterval setting, in case you
need a less dense sampling of the voxel grid. Plotting fewer points helps us to see around
them and get a better sense of the interior structure of the field; this can be helped by
interactively rotating the plot if you are using a terminal, such as x11, that supports that.

set vgrid $v size 100

set vzrange [0:1]; set vyrange [0:1]; set vzrange [0:1]

set urange [0:1]; set vrange [0:1]

set xrange [0:1]; set yrange [0:1]; set zrange [0:1]

dx = 1.0/20

$charges << EOD

0 0 0.75 1

0 0 0.25 -1

EOD

pot(r) = r > 0 ? 1/r : 10^6

vfill $charges using 1:2:3:(2):($4*pot(VoxelDistance))

set xyplane at -0.1; set border 4095; unset key

splot $v with points above 5 pt 7 ps 0.2 pi 4,\

$v with points above 10 pt 7 ps 0.3 pi 4 lc "green"


set vgrid $v size 100
set vzrange [0:1]; set vyrange [0:1]; set vzrange [0:1]
set urange [0:1]; set vrange [0:1]
set xrange [0:1]; set yrange [0:1]; set zrange [0:1]
dx = 1.0/20
$charges << EOD
0 0 0.75 1
0 0 0.25 -1
EOD
pot(r) = r > 0 ? 1/r : 10^6
vfill $charges using 1:2:3:(2):($4*pot(VoxelDistance))
set xyplane at -0.1; set border 4095; unset key
splot $v with points above 5 pt 7 ps 0.2 pi 4,\
    $v with points above 10 pt 7 ps 0.3 pi 4 lc "green"
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Here we color the points using the default palette, with a pointinterval setting to let
us try to see inside. We use a small above setting to image most of the voxel grid.

set vgrid $v size 100

set vzrange [0:1]; set vyrange [0:1]; set vzrange [0:1]

set urange [0:1]; set vrange [0:1]

set xrange [0:1]; set yrange [0:1]; set zrange [0:1]

set cbr [-3 : 3]

$charges << EOD

0 0 0.75 1

0 0 0.25 -1

EOD

pot(r) = r > 0 ? 1/r : 10^6

vfill $charges using 1:2:3:(2):($4*pot(VoxelDistance))

set xyplane at -0.1; set border 4095; unset key

splot $v with points above -100 pt 7 ps 0.2 pi 4 lc pal


set vgrid $v size 100
set vzrange [0:1]; set vyrange [0:1]; set vzrange [0:1]
set urange [0:1]; set vrange [0:1]
set xrange [0:1]; set yrange [0:1]; set zrange [0:1]
set cbr [-3 : 3]
$charges << EOD
0 0 0.75 1
0 0 0.25 -1
EOD
pot(r) = r > 0 ? 1/r : 10^6
vfill $charges using 1:2:3:(2):($4*pot(VoxelDistance))
set xyplane at -0.1; set border 4095; unset key
splot $v with points above -100 pt 7 ps 0.2 pi 4 lc pal
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Jitter
You may have noticed the appearance of a kind of moiré pattern in the previous visualiza-
tions. This is due to viewing periodic arrays of points superimposed on each other, and
will be a problem in many of these 3D plots using arrays of points.

The moiré pattern that results from looking through a regular array of points is not
only annoying, but can give a false impression about the nature of the data that the
visualization is trying to clarify. You can eliminate this problem by applying jitter.

set vgrid $v size 100

set vzrange [0:1]; set vyrange [0:1]; set vzrange [0:1]

set urange [0:1]; set vrange [0:1]

set xrange [0:1]; set yrange [0:1]; set zrange [0:1]

$charges << EOD

0 0 0.75 1

0 0 0.25 -1

EOD

pot(r) = r > 0 ? 1/r : 10^6

vfill $charges using 1:2:3:(2):($4*pot(VoxelDistance))

set cbr [-3 : 3]

set xyplane at -0.1; set border 4095; unset key

set jitter over 0 spread 3 square

splot $v with points above -100 pt 7 ps 0.2 pi 4 lc pal


set vgrid $v size 100
set vzrange [0:1]; set vyrange [0:1]; set vzrange [0:1]
set urange [0:1]; set vrange [0:1]
set xrange [0:1]; set yrange [0:1]; set zrange [0:1]
$charges << EOD
0 0 0.75 1
0 0 0.25 -1
EOD
pot(r) = r > 0 ? 1/r : 10^6
vfill $charges using 1:2:3:(2):($4*pot(VoxelDistance))
set cbr [-3 : 3]
set xyplane at -0.1; set border 4095; unset key
set jitter over 0 spread  3 square
splot $v with points above -100 pt 7 ps 0.2 pi 4 lc pal
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If you don’t care about seeing inside the box, but are content to admire surface appearances,
you can just use a larger point size.

set vgrid $v size 100

set vzrange [0:1]; set vyrange [0:1]; set vzrange [0:1]

set urange [0:1]; set vrange [0:1]

set xrange [0:1]; set yrange [0:1]; set zrange [0:1]

dx = 1.0/20

$charges << EOD

0 0 0.75 1

0 0 0.25 -1

EOD

pot(r) = r > 0 ? 1/r : 10^6

vfill $charges using 1:2:3:(2):($4*pot(VoxelDistance))

set cbr [-3 : 3]

set xyplane at -0.1; set border 4095; unset key

set jitter over 0 spread 3 square

splot $v with points above -100 pt 7 ps 0.4 lc pal


set vgrid $v size 100
set vzrange [0:1]; set vyrange [0:1]; set vzrange [0:1]
set urange [0:1]; set vrange [0:1]
set xrange [0:1]; set yrange [0:1]; set zrange [0:1]
dx = 1.0/20
$charges << EOD
0 0 0.75 1
0 0 0.25 -1
EOD
pot(r) = r > 0 ? 1/r : 10^6
vfill $charges using 1:2:3:(2):($4*pot(VoxelDistance))
set cbr [-3 : 3]
set xyplane at -0.1; set border 4095; unset key
set jitter over 0 spread  3 square
splot $v with points above -100 pt 7 ps 0.4 lc pal
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Creating Coordinate Files

In order to have more options when making the type of volume plot that we saw in the last few examples, we will have to
make a coordinate grid and splot it, using the voxel grid as a data source. This will allow us to include a using clause, which
means that we’ll be able to vary the opacity, color, point size, and point type with the voxel data. The next few examples
will explore some of the possibilities.

Although our examples are self-contained, the ones that follow will require a data file consisting of a grid of coordinates.
In 1D and 2D splot commands, you can use the “special filenames” + and ++ to automatically generate these grids on the fly,
and refer to their columns in a using clause. Because gnuplot does not have a +++ special filename, we’ll have to generate
these coordinates in a separate step and store them on disk. We could also store them in a datablock, as we did to define the
locations of the charges above, but, since we will be using these coordinates repeatedly, it’s more convenient to do it once.
In order for any of the following examples that refer to cube20 or cube100 to work, you must have run the following code
in gnuplot, to generate the files. We’ll use gnuplot’s convenient looping commands, and the set print command to print
the output to a file:

nx = 20

set print "cube" . nx

do for [i = 0 : nx] {

do for [j = 0 : nx] {

do for [k = 0 : nx] {

ic = 1.0*i/nx
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jc = 1.0*j/nx

kc = 1.0*k/nx

print sprintf("%f %f %f", ic, jc, kc)

}}}

You should run the above code twice; once as is, and once after doing nx = 100 to produce the grid100 file. Make sure
the you run the examples in the same directory containing these grid files, or they won’t work as shown.



Lee Phillips: Gnuplot 5 2nd ed. Voxels 343

Volume Plot from a Voxel Grid
Here we show how to plot a projection, or sampling, of the voxel grid on a set of 3D
coordinates. This type of plot is like the familiar scatterplot in 2D, that we create with the
plot...with points command, but now the plotted points will be arranged within the
3D volume region. We use a macro for the voxel function to make our splot command
more concise. Since we would like to clearly distinguish between negative and positive
values of the potential, we’ll define a palette that shows this.

set vgrid $v size 100

set vzrange [0:1]; set vyrange [0:1]; set vzrange [0:1]

set urange [0:1]; set vrange [0:1]

set xrange [0:1]; set yrange [0:1]; set zrange [0:1]

set pal define (0 "red", .5 "black", 1 "blue")

v = "voxel($1, $2, $3)"

$charges << EOD

0 0 0.75 1

0 0 0.25 -1

EOD

pot(r) = r > 0 ? 1/r : 10^6

vfill $charges using 1:2:3:(2):($4*pot(VoxelDistance))

set view 65, 40; set xyplane at -0.1; set border 4095

unset key; set cbr [-4 : 4]

splot "cube100" using 1:2:3:(@v) with points pt 7 ps .4 lc pal


set vgrid $v size 100
set vzrange [0:1]; set vyrange [0:1]; set vzrange [0:1]
set urange [0:1]; set vrange [0:1]
set xrange [0:1]; set yrange [0:1]; set zrange [0:1]
set pal define (0 "red", .5 "black", 1 "blue")
v = "voxel($1, $2, $3)"
$charges << EOD
0 0 0.75 1
0 0 0.25 -1
EOD
pot(r) = r > 0 ? 1/r : 10^6
vfill $charges using 1:2:3:(2):($4*pot(VoxelDistance))
set view 65, 40; set xyplane at -0.1; set border 4095
unset key; set cbr [-4 : 4]
splot "cube100" using 1:2:3:(@v) with points pt 7 ps .4 lc pal
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This is pretty nice, but notice that, as in a previous example, because you can’t see through
the points on the surfaces of the cube, you can’t see inside it; so you’re really just looking
at several 2D surface plots. We could use fewer points, to allow us to see around them.
This will show us some of what’s going on inside. We’ll make one change to the previous
script, using the 20³ grid rather than the 100³ one. In other words, instead of skipping
points by setting a pointinterval, we’ll use the sparser grid that we saved on disk.
In fact, the pointinterval command does not work with this version of the splot

command.

set vgrid $v size 100

set vzrange [0:1]; set vyrange [0:1]; set vzrange [0:1]

set urange [0:1]; set vrange [0:1]

set xrange [0:1]; set yrange [0:1]; set zrange [0:1]

set pal define (0 "red", .5 "black", 1 "blue")

$charges << EOD

0 0 0.75 1

0 0 0.25 -1

EOD

pot(r) = r > 0 ? 1/r : 10^6

vfill $charges using 1:2:3:(2):($4*pot(VoxelDistance))

v = "voxel($1, $2, $3)"

set view 65, 40

set xyplane at -0.1

set border 4095

unset key

set cbr [-4 : 4]

splot "cube20" using 1:2:3:(@v) with points pt 7 ps .4 lc pal


set vgrid $v size 100
set vzrange [0:1]; set vyrange [0:1]; set vzrange [0:1]
set urange [0:1]; set vrange [0:1]
set xrange [0:1]; set yrange [0:1]; set zrange [0:1]
set pal define (0 "red", .5 "black", 1 "blue")
$charges << EOD
0 0 0.75 1
0 0 0.25 -1
EOD
pot(r) = r > 0 ? 1/r : 10^6
vfill $charges using 1:2:3:(2):($4*pot(VoxelDistance))
v = "voxel($1, $2, $3)"
set view 65, 40
set xyplane at -0.1
set border 4095
unset key
set cbr [-4 : 4]
splot "cube20" using 1:2:3:(@v) with points pt 7 ps .4 lc pal



Lee Phillips: Gnuplot 5 2nd ed. Voxels 345

Manual Jitter

You may have noticed the reappearance of the moiré pattern in this visualization. The jitter setting has no effect when
using this version of the splot command, so we’ll have to roll our own. As a consolation, doing it ourselves will allow us
to exercise more control.

We’ll begin by defining a macro that we can use in plot commands to add some random variation to the coordinates:

j = '(rand(0) - 0.5) * dx'

To use this, we should define dx to be the distance between neighboring points on the grid. Now all we need to do is to
add this to each coordinate, as in the following examples.
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Voxel Plot with Jitter
Here we repeat the previous plot, but using our home-made jitter macro.

set vgrid $v size 100

set vzrange [0:1]; set vyrange [0:1]; set vzrange [0:1]

set urange [0:1]; set vrange [0:1]

set xrange [0:1]; set yrange [0:1]; set zrange [0:1]

dx = 1.0/20

set pal define (0 "red", .5 "black", 1 "blue")

$charges << EOD

0 0 0.75 1

0 0 0.25 -1

EOD

pot(r) = r > 0 ? 1/r : 10^6

vfill $charges using 1:2:3:(2):($4*pot(VoxelDistance))

j = "(rand(0) - 0.5) * dx"

v = "voxel($1, $2, $3)"

set view 65, 40

set xyplane at -0.1

set border 4095

unset key

set cbr [-4 : 4]; unset colorbox

splot "cube20" using ($1 + @j):($2 + @j):($3 + @j):(@v) with points pt 7 ps .4 lc pal


set vgrid $v size 100
set vzrange [0:1]; set vyrange [0:1]; set vzrange [0:1]
set urange [0:1]; set vrange [0:1]
set xrange [0:1]; set yrange [0:1]; set zrange [0:1]
dx = 1.0/20
set pal define (0 "red", .5 "black", 1 "blue")
$charges << EOD
0 0 0.75 1
0 0 0.25 -1
EOD
pot(r) = r > 0 ? 1/r : 10^6
vfill $charges using 1:2:3:(2):($4*pot(VoxelDistance))
j = "(rand(0) - 0.5) * dx"
v = "voxel($1, $2, $3)"
set view 65, 40
set xyplane at -0.1
set border 4095
unset key
set cbr [-4 : 4]; unset colorbox
splot "cube20" using ($1 + @j):($2 + @j):($3 + @j):(@v) with points pt 7 ps .4 lc pal
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We might be able to improve the resolution a bit by using more points, while using dots,
which will draw the smallest possible point. We’ll also tilt the box a bit more.

set vgrid $v size 100

set vzrange [0:1]; set vyrange [0:1]; set vzrange [0:1]

set urange [0:1]; set vrange [0:1]

set xrange [0:1]; set yrange [0:1]; set zrange [0:1]

dx = 1.0/20

set pal define (0 "red", .5 "black", 1 "blue")

$charges << EOD

0 0 0.75 1

0 0 0.25 -1

EOD

pot(r) = r > 0 ? 1/r : 10^6

vfill $charges using 1:2:3:(2):($4*pot(VoxelDistance))

j = "(rand(0) - 0.5) * dx"

v = "voxel($1, $2, $3)"

set view 50, 40

set xyplane at -0.1

set border 4095

unset key

set cbr [-4 : 4]; unset colorbox

splot "cube100" using ($1 + @j):($2 + @j):($3 + @j):(@v)\

with dots lc pal


set vgrid $v size 100
set vzrange [0:1]; set vyrange [0:1]; set vzrange [0:1]
set urange [0:1]; set vrange [0:1]
set xrange [0:1]; set yrange [0:1]; set zrange [0:1]
dx = 1.0/20
set pal define (0 "red", .5 "black", 1 "blue")
$charges << EOD
0 0 0.75 1
0 0 0.25 -1
EOD
pot(r) = r > 0 ? 1/r : 10^6
vfill $charges using 1:2:3:(2):($4*pot(VoxelDistance))
j = "(rand(0) - 0.5) * dx"
v = "voxel($1, $2, $3)"
set view 50, 40
set xyplane at -0.1
set border 4095
unset key
set cbr [-4 : 4]; unset colorbox
splot "cube100" using ($1 + @j):($2 + @j):($3 + @j):(@v)\
    with dots lc pal
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As you can see, even if we make the points as small as possible, if we try to get good resolution by using a fine grid, we
can’t see inside very far, as the points occlude each other. One obvious thing to try is to use transparent colors for the points,
so we can see through them. Since palettes in gnuplot can’t have transparency, we’ll have to specify the colors some other
way. For this, it will be convenient to define some functions that map field values into color numbers.

First we store the minimum and maximum of the data in dmin and dmax. We will be working with the integer represen-
tation of colors in gnuplot, which are most conveniently expressed as a hexadecimal number with the format 0xAARRGGBB,
where the high bits, the As, represent the opacity, which goes from completely opaque, at 0x00RRGGBB, to completely trans-
parent, or invisible, at 0xFFRRGGBB. The other places represent the values for red, green and blue. This representation makes
adding or subtracting particular color values, or opacity, convenient, if we use bit shifts. As an example, if we start with
black = 0x00000000 and want to turn it into maximum green, we can add to it the number 255<<8 = 65280 = 0xFF00

= 255 * 2**8. Any of these representations will work, but the bit shift operator, the first one, is the most concise way to
convert values from 0 to 255 into numbers for the colors that we want. Using this technique, we can make a function that
maps [0, 1] to [black, blue] like this:

bb(x, dmin, dmax) = int(1.0*(min(max(x, dmin), dmax))/dmax*0xFF)

and one that goes from black to red like this:

br(x, dmin, dmax) = (int(1.0*(min(max(x, dmin), dmax))/dmax*0xFF))<<16

(The multiplications by 1.0 are to force a conversion to float, because 1/2 = 0 in gnuplot. Also, since gnuplot doesn’t come
with a min nor a max function, we’ll have to make our own.)
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What we are really after is a function that goes from red in the negative to blue in the positive, with black near zero,
similar to the palette we’ve been using up to now. We can put this together using the two functions we just defined:

pmrb(x, dmin, dmax) = x<0?br(abs(x), 0, abs(dmin)):bb(x, 0, dmax)

Once we have this color function, we can make the colors transparent by adding a number like 0xFB000000 to them; this
particular choice will make them nearly totally transparent, but since there are so many overlapping points, and the opacity
builds up with the overlap, this is what we need. The next example shows the result.
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set vgrid $v size 100

set vzrange [0:1]; set vyrange [0:1]; set vzrange [0:1]

set urange [0:1]; set vrange [0:1]

set xrange [0:1]; set yrange [0:1]; set zrange [0:1]

$charges << EOD

0 0 0.75 1

0 0 0.25 -1

EOD

pot(r) = r > 0 ? 1/r : 10^6

vfill $charges using 1:2:3:(2):($4*pot(VoxelDistance))

max(a, b) = a<b?b:a

min(a, b) = a<b?a:b

bb(x, dmin, dmax) = int(1.0*(min(max(x, dmin), dmax))/dmax*0xFF)

br(x, dmin, dmax) = (int(1.0*(min(max(x, dmin), dmax))/dmax*0xFF))<<16

pmrb(x, dmin, dmax) = x<0?br(abs(x), 0, abs(dmin)):bb(x, 0, dmax)

dx = 1.0/100

j = "(rand(0) - 0.5) * dx"; v = "voxel($1, $2, $3)"

set view 50, 40; set xyplane at -0.1; set border 4095

unset key

splot "cube100" using ($1 + @j):($2 + @j):($3 + @j):(pmrb(@v, -2, 2) +\

0xFB000000) with points pt 7 ps .2 lc rgbcolor var


set vgrid $v size 100
set vzrange [0:1]; set vyrange [0:1]; set vzrange [0:1]
set urange [0:1]; set vrange [0:1]
set xrange [0:1]; set yrange [0:1]; set zrange [0:1]
$charges << EOD
0 0 0.75 1
0 0 0.25 -1
EOD
pot(r) = r > 0 ? 1/r : 10^6
vfill $charges using 1:2:3:(2):($4*pot(VoxelDistance))
max(a, b) = a<b?b:a
min(a, b) = a<b?a:b
bb(x, dmin, dmax) = int(1.0*(min(max(x, dmin), dmax))/dmax*0xFF)
br(x, dmin, dmax) = (int(1.0*(min(max(x, dmin), dmax))/dmax*0xFF))<<16
pmrb(x, dmin, dmax) = x<0?br(abs(x), 0, abs(dmin)):bb(x, 0, dmax)
dx = 1.0/100
j = "(rand(0) - 0.5) * dx"; v = "voxel($1, $2, $3)"
set view 50, 40; set xyplane at -0.1; set border 4095
unset key
splot "cube100" using ($1 + @j):($2 + @j):($3 + @j):(pmrb(@v, -2, 2) +\
    0xFB000000) with points pt 7 ps .2 lc rgbcolor var
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We can create a somewhat more refined visualization by varying the opacity with the
field strength. In this script you will see another function, tb, that maps field values to
opacity values, by shifting a number in [0, 255] to the high bits of the rgbcolor integer.

set vgrid $v size 100

set vzrange [0:1]; set vyrange [0:1]; set vzrange [0:1]

set urange [0:1]; set vrange [0:1]

set xrange [0:1]; set yrange [0:1]; set zrange [0:1]

$charges << EOD

0 0 0.75 1

0 0 0.25 -1

EOD

max(a, b) = a<b?b:a; min(a, b) = a<b?a:b

bb(x, dmin, dmax) = int(1.0*(min(max(x, dmin), dmax))/dmax*0xFF)

br(x, dmin, dmax) = (int(1.0*(min(max(x, dmin), dmax))/dmax*0xFF))<<16

pmrb(x, dmin, dmax) = x<0?br(abs(x), 0, abs(dmin)):bb(x, 0, dmax)

tb(x, dmax) = -((int(1.0*min(abs(x), abs(dmax))/abs(dmax)*0xFF))<<24)

pot(r) = r > 0 ? 1/r : 10^6

dx = 1.0/100

j = "(rand(0) - 0.5) * dx"; v = "voxel($1, $2, $3)"

vfill $charges using 1:2:3:(2):($4*pot(VoxelDistance))

set view 65, 100; set xyplane at -0.1; set border 4095; unset key

splot "cube100" using ($1 + @j):($2 + @j):($3 + @j):\

(0xFF000000 + pmrb(@v, -5, 5) + tb(@v, 20))\

with points pt 7 ps .2 lc rgbcolor var


set vgrid $v size 100
set vzrange [0:1]; set vyrange [0:1]; set vzrange [0:1]
set urange [0:1]; set vrange [0:1]
set xrange [0:1]; set yrange [0:1]; set zrange [0:1]
$charges << EOD
0 0 0.75 1
0 0 0.25 -1
EOD
max(a, b) = a<b?b:a; min(a, b) = a<b?a:b
bb(x, dmin, dmax) = int(1.0*(min(max(x, dmin), dmax))/dmax*0xFF)
br(x, dmin, dmax) = (int(1.0*(min(max(x, dmin), dmax))/dmax*0xFF))<<16
pmrb(x, dmin, dmax) = x<0?br(abs(x), 0, abs(dmin)):bb(x, 0, dmax)
tb(x, dmax) = -((int(1.0*min(abs(x), abs(dmax))/abs(dmax)*0xFF))<<24)
pot(r) = r > 0 ? 1/r : 10^6
dx = 1.0/100
j = "(rand(0) - 0.5) * dx"; v = "voxel($1, $2, $3)"
vfill $charges using 1:2:3:(2):($4*pot(VoxelDistance))
set view 65, 100; set xyplane at -0.1; set border 4095; unset key
splot "cube100" using ($1 + @j):($2 + @j):($3 + @j):\
    (0xFF000000 + pmrb(@v, -5, 5) + tb(@v, 20))\
    with points pt 7 ps .2 lc rgbcolor var
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Up to now we have used the voxel values to set the color or opacity of the gridpoints.
As with 2D splots, we can also scale the point size using the data. There are other
possibilities, of course, such as combining this technique with variable opacity, but after
this example it will be time to change gears.

set vgrid $v size 100

set vzrange [0:1]; set vyrange [0:1]; set vzrange [0:1]

set urange [0:1]; set vrange [0:1]

set xrange [0:1]; set yrange [0:1]; set zrange [0:1]

$charges << EOD

0 0 0.75 1

0 0 0.25 -1

EOD

pot(r) = r > 0 ? 1/r : 10^6

vfill $charges using 1:2:3:(2):($4*pot(VoxelDistance))

set pal define (0 "red", .5 "black", 1 "blue"); set cbr [-1 : 1]

dx = 1.0/100

j = "(rand(0) - 0.5) * dx"; v = "voxel($1, $2, $3)"

min(a, b) = a<b?a:b

set view 65, 100; set xyplane at -0.1; set border 4095; unset key

splot "cube20" using\

($1 + @j):($2 + @j):($3 + @j):(min(abs(@v)*.2, 3)):(voxel($1,$2,$3))\

with points pt 7 ps var lc pal


set vgrid $v size 100
set vzrange [0:1]; set vyrange [0:1]; set vzrange [0:1]
set urange [0:1]; set vrange [0:1]
set xrange [0:1]; set yrange [0:1]; set zrange [0:1]
$charges << EOD
0 0 0.75 1
0 0 0.25 -1
EOD
pot(r) = r > 0 ? 1/r : 10^6
vfill $charges using 1:2:3:(2):($4*pot(VoxelDistance))
set pal define (0 "red", .5 "black", 1 "blue"); set cbr [-1 : 1]
dx = 1.0/100
j = "(rand(0) - 0.5) * dx"; v = "voxel($1, $2, $3)"
min(a, b) = a<b?a:b
set view 65, 100; set xyplane at -0.1; set border 4095; unset key
splot "cube20" using\
   ($1 + @j):($2 + @j):($3 + @j):(min(abs(@v)*.2, 3)):(voxel($1,$2,$3))\
   with points pt 7 ps var lc pal
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Another common way to visualize the interior of a volume is to intersect it with a plane
and plot the projection of the field on the plane surface. We can project the voxel grid on
a plane in any orientation and at any position. We continue to jitter the coordinates in all
the similar examples in this chapter.

set vgrid $v size 100

set vzrange [0:1]; set vyrange [0:1]; set vzrange [0:1]

set urange [0:1]; set vrange [0:1]

set xrange [0:1]; set yrange [0:1]; set zrange [0:1]

$charges << EOD

0 0 0.75 1

0 0 0.25 -1

EOD

pot(r) = r > 0 ? 1/r : 10^6

vfill $charges using 1:2:3:(2):($4*pot(VoxelDistance))

dx = 1.0/100

set samp 100; set iso 100

j = "(rand(0) - 0.5) * dx"; v = "voxel($1, $2, $3)"

set view 65, 20; set xyplane at -0.1; set border 4095; unset key

set pal define (0 "red", .5 "black", 1 "blue"); set cbr [-1 : 1]

splot "cube20" using ($1 + @j):($2 + @j):($3 + @j):(voxel($1,$2,$3))\

with points pt 7 ps .3 lc pal,\

"++" using (0.2):1:2:(voxel(0.2, $1, $2)) with pm3d


set vgrid $v size 100
set vzrange [0:1]; set vyrange [0:1]; set vzrange [0:1]
set urange [0:1]; set vrange [0:1]
set xrange [0:1]; set yrange [0:1]; set zrange [0:1]
$charges << EOD
0 0 0.75 1
0 0 0.25 -1
EOD
pot(r) = r > 0 ? 1/r : 10^6
vfill $charges using 1:2:3:(2):($4*pot(VoxelDistance))
dx = 1.0/100
set samp 100; set iso 100
j = "(rand(0) - 0.5) * dx"; v = "voxel($1, $2, $3)"
set view 65, 20; set xyplane at -0.1; set border 4095; unset key
set pal define (0 "red", .5 "black", 1 "blue"); set cbr [-1 : 1]
splot "cube20" using ($1 + @j):($2 + @j):($3 + @j):(voxel($1,$2,$3))\
    with points pt 7 ps .3 lc pal,\
    "++" using (0.2):1:2:(voxel(0.2, $1, $2)) with pm3d
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We can extend the previous method to include a series of slices, which is one of the most
effective ways to visualize a 3D field. We’ll have to make the slices transparent for this to
work. We’ll also change the palette to use white for the field values near zero. The final
command uses a loop to plot the slices; we’re leaving out the plotting of points here, so
we no longer need the jitter function.

set vgrid $v size 100

set vzrange [0:1]; set vyrange [0:1]; set vzrange [0:1]

set urange [0:1]; set vrange [0:1]

set xrange [0:1]; set yrange [0:1]; set zrange [0:1]

$charges << EOD

0 0 0.75 1

0 0 0.25 -1

EOD

pot(r) = r > 0 ? 1/r : 10^6

vfill $charges using 1:2:3:(2):($4*pot(VoxelDistance))

set samp 100; set iso 100

set view 65, 20; set xyplane at -0.1; set border 4095; unset key

set pal define (0 "red", .5 "white", 1 "blue"); set cbr [-1 : 1]

set style fill transparent solid 0.4

splot for [j=0:9] "++" using (j/10.):1:2:(voxel(j/10., $1, $2))\

with pm3d


set vgrid $v size 100
set vzrange [0:1]; set vyrange [0:1]; set vzrange [0:1]
set urange [0:1]; set vrange [0:1]
set xrange [0:1]; set yrange [0:1]; set zrange [0:1]
$charges << EOD
0 0 0.75 1
0 0 0.25 -1
EOD
pot(r) = r > 0 ? 1/r : 10^6
vfill $charges using 1:2:3:(2):($4*pot(VoxelDistance))
set samp 100; set iso 100
set view 65, 20; set xyplane at -0.1; set border 4095; unset key
set pal define (0 "red", .5 "white", 1 "blue"); set cbr [-1 : 1]
set style fill transparent solid 0.4
splot for [j=0:9] "++" using (j/10.):1:2:(voxel(j/10., $1, $2))\
    with pm3d
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We need not be confined to slicing the data with planes parallel to a coordinate plane, as
in the previous example. Here we slice with a plane going diagonally across the box.

set vgrid $v size 100

set vzrange [0:1]; set vyrange [0:1]; set vzrange [0:1]

set urange [0:1]; set vrange [0:1]

set xrange [0:1]; set yrange [0:1]; set zrange [0:1]

set samp 100; set iso 100

$charges << EOD

0 0 0.75 1

0 0 0.25 -1

EOD

pot(r) = r > 0 ? 1/r : 10^6

vfill $charges using 1:2:3:(2):($4*pot(VoxelDistance))

dx = 1.0/20; j = "(rand(0) - 0.5) * dx"; v = "voxel($1, $2, $3)"

set view 65, 20; set xyplane at -0.1; set border 4095; unset key

set pal define (0 "red", .5 "black", 1 "blue"); set cbr [-0.5 : 0.5]

splot "cube20" using ($1 + @j):($2 + @j):($3 + @j):(voxel($1,$2,$3))\

with points pt 7 ps 0.3 lc pal,\

"++" using (1 - $1):1:2:(voxel(1 - $1, $1, $2)) with pm3d


set vgrid $v size 100
set vzrange [0:1]; set vyrange [0:1]; set vzrange [0:1]
set urange [0:1]; set vrange [0:1]
set xrange [0:1]; set yrange [0:1]; set zrange [0:1]
set samp 100; set iso 100
$charges << EOD
0 0 0.75 1
0 0 0.25 -1
EOD
pot(r) = r > 0 ? 1/r : 10^6
vfill $charges using 1:2:3:(2):($4*pot(VoxelDistance))
dx = 1.0/20; j = "(rand(0) - 0.5) * dx"; v = "voxel($1, $2, $3)"
set view 65, 20; set xyplane at -0.1; set border 4095; unset key
set pal define (0 "red", .5 "black", 1 "blue"); set cbr [-0.5 : 0.5]
splot "cube20" using ($1 + @j):($2 + @j):($3 + @j):(voxel($1,$2,$3))\
    with points pt 7 ps 0.3 lc pal,\
    "++" using (1 - $1):1:2:(voxel(1 - $1, $1, $2)) with pm3d
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Our intersecting surface need not even be a plane. We can image the projection of the
voxel grid on a curved surface, as well. This example bends the plane in the previous
example into a section of a circle. The depthorder setting is to cause the surface to
render correctly in 3D perspective.

set vgrid $v size 100

set vzrange [0:1]; set vyrange [0:1]; set vzrange [0:1]

set urange [0:1]; set vrange [0:1]

set xrange [0:1]; set yrange [0:1]; set zrange [0:1]

set samp 100; set iso 100; v = "voxel($1, $2, $3)"

$charges << EOD

0 0 0.75 1

0 0 0.25 -1

EOD

pot(r) = r > 0 ? 1/r : 10^6

vfill $charges using 1:2:3:(2):($4*pot(VoxelDistance))

dx = 1.0/20; j = "(rand(0) - 0.5) * dx"

set view 65, 20; set xyplane at -0.1; set border 4095; unset key

set pal define (0 "red", .5 "black", 1 "blue"); set cbr [-0.2 : 0.2]

set pm3d depthorder

splot "cube20" using\

($1 + @j):($2 + @j):($3 + @j):(voxel($1,$2,$3))\

with points pt 7 ps .3 lc pal,\

"++" using (cos($1*pi/2.0)):(sin($1*pi/2.0)):2:(voxel(cos($1*pi/2.0), sin($1*pi/2.0), $2)) with pm3d


set vgrid $v size 100
set vzrange [0:1]; set vyrange [0:1]; set vzrange [0:1]
set urange [0:1]; set vrange [0:1]
set xrange [0:1]; set yrange [0:1]; set zrange [0:1]
set samp 100; set iso 100; v = "voxel($1, $2, $3)"
$charges << EOD
0 0 0.75 1
0 0 0.25 -1
EOD
pot(r) = r > 0 ? 1/r : 10^6
vfill $charges using 1:2:3:(2):($4*pot(VoxelDistance))
dx = 1.0/20; j = "(rand(0) - 0.5) * dx"
set view 65, 20; set xyplane at -0.1; set border 4095; unset key
set pal define (0 "red", .5 "black", 1 "blue"); set cbr [-0.2 : 0.2]
set pm3d depthorder
splot "cube20" using\
  ($1 + @j):($2 + @j):($3 + @j):(voxel($1,$2,$3))\
  with points pt 7 ps .3 lc pal,\
   "++" using (cos($1*pi/2.0)):(sin($1*pi/2.0)):2:(voxel(cos($1*pi/2.0), sin($1*pi/2.0), $2)) with pm3d
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Of course, you can also sample the voxel values with a curve passing through the 3D
space.

set vgrid $v size 100

set vzrange [0:1]; set vyrange [0:1]; set vzrange [0:1]

set urange [0:1]; set vrange [0:1]

set xrange [0:1]; set yrange [0:1]; set zrange [0:1]

set view 65, 20; set xyplane at -0.1; set border 4095; unset key

$charges << EOD

0 0 0.75 1

0 0 0.25 -1

EOD

pot(r) = r > 0 ? 1/r : 10^6

vfill $charges using 1:2:3:(2):($4*pot(VoxelDistance))

set pal define (0 "red", .5 "black", 1 "blue"); set cbr [-0.2 : 0.2]

set pm3d depthorder

splot "cube100" using 1:1:(($1)**0.5):(voxel($1, $1, ($1)**0.5)) with points pt 7 ps 1 lc pal


set vgrid $v size 100
set vzrange [0:1]; set vyrange [0:1]; set vzrange [0:1]
set urange [0:1]; set vrange [0:1]
set xrange [0:1]; set yrange [0:1]; set zrange [0:1]
set view 65, 20; set xyplane at -0.1; set border 4095; unset key
$charges << EOD
0 0 0.75 1
0 0 0.25 -1
EOD
pot(r) = r > 0 ? 1/r : 10^6
vfill $charges using 1:2:3:(2):($4*pot(VoxelDistance))
set pal define (0 "red", .5 "black", 1 "blue"); set cbr [-0.2 : 0.2]
set pm3d depthorder
splot "cube100" using 1:1:(($1)**0.5):(voxel($1, $1, ($1)**0.5)) with points pt 7 ps 1 lc pal
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The splot command for visualizing voxel grids has one more trick up its sleeve: iso-
surfaces. This is a surface, or a set of surfaces, that show where the voxel grid has a
certain value (interpolating if necessary). The following command draws the isosurfaces
showing where the voxel grid has the values 1 or -1. Notice how the “top” and “bottom”
of the surfaces are colored differently, and how we don’t need to supply a coordinate grid.
This command uses pm3d surfaces behind the scenes; hence the depthorder command
to make them render correctly.

set vgrid $v size 100

set vzrange [0:1]; set vyrange [0:1]; set vzrange [0:1]

set urange [0:1]; set vrange [0:1]

set xrange [0:1]; set yrange [0:1]; set zrange [0:1]

$charges << EOD

0 0 0.75 1

0 0 0.25 -1

EOD

pot(r) = r > 0 ? 1/r : 10^6

vfill $charges using 1:2:3:(2):($4*pot(VoxelDistance))

set view 65, 20; set xyplane at -0.1; set border 4095; unset key

set pm3d depthorder

splot $v with isosurface level 1, $v with isosurface level -1


set vgrid $v size 100
set vzrange [0:1]; set vyrange [0:1]; set vzrange [0:1]
set urange [0:1]; set vrange [0:1]
set xrange [0:1]; set yrange [0:1]; set zrange [0:1]
$charges << EOD
0 0 0.75 1
0 0 0.25 -1
EOD
pot(r) = r > 0 ? 1/r : 10^6
vfill $charges using 1:2:3:(2):($4*pot(VoxelDistance))
set view 65, 20; set xyplane at -0.1; set border 4095; unset key
set pm3d depthorder
splot $v with isosurface level 1, $v with isosurface level -1
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We can produce an excellent visualization of this field by drawing a set of nested isosur-
faces, looping as we did above when we plotted a series of slices. This graph makes the
symmetry of the field clear, while also giving a good indication of how intensity falls off
with distance from the charges. Unfortunately, in the current version (v. 5.4 patchlevel
rc2), the coloring of isosurfaces is broken, so for now we need to live with the sequence
of colors that we get.

set vgrid $v size 100

set vzrange [0:1]; set vyrange [0:1]; set vzrange [0:1]

set urange [0:1]; set vrange [0:1]

set xrange [0:1]; set yrange [0:1]; set zrange [0:1]

$charges << EOD

0 0 0.75 1

0 0 0.25 -1

EOD

pot(r) = r > 0 ? 1/r : 10^6

vfill $charges using 1:2:3:(2):($4*pot(VoxelDistance))

set view 65, 20; set xyplane at -0.1; set border 4095; unset key

set pm3d depthorder

set style fill transparent solid 0.4

splot for [j=-100:100:1] $v with isosurface level j


set vgrid $v size 100
set vzrange [0:1]; set vyrange [0:1]; set vzrange [0:1]
set urange [0:1]; set vrange [0:1]
set xrange [0:1]; set yrange [0:1]; set zrange [0:1]
$charges << EOD
0 0 0.75 1
0 0 0.25 -1
EOD
pot(r) = r > 0 ? 1/r : 10^6
vfill $charges using 1:2:3:(2):($4*pot(VoxelDistance))
set view 65, 20; set xyplane at -0.1; set border 4095; unset key
set pm3d depthorder
set style fill transparent solid 0.4
splot for [j=-100:100:1] $v with isosurface level j
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Index

+, 124
++, 161
–persist, 6
-c, 132, 133
-e, 132
-p, 132
., 86
LATEX, 235
TEX, 235
TEX Live, 235, 237
TEX Users’ Group, 235
TEX math

in gnuplot plots, 243, 246, 247
̀, 130
2D plots, 6
3D, 145, 146

box floor, 170

grids, 171, 172
3D bar charts, 304
3D box plot, 91
3D data, 160
3D plots

rules of thumb, 182
3D plotting, 335
3d Polygons, 295
4D plots, 181

advertising, 304
aliasing, 24
alpha, 292
and operator, 137
animation, 120, 129
Archimedes spiral, 54
Archimedes’ spiral, 40, 41
arguments, 133

380
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passing to scripts, 286
arrays, 135, 285

length, 135
arrows, 280, 297, 299, 300

arrowhead borders, 297
as axes, 318
incorrect head size, 299

aspect ratio, 293
autotitle, 87
axes

broken, 324
labels, 95
colors, 98
offset, 97

on spider plots, 278
axis

styling, 35
axis labels, 95

in 3D, 185, 186
when using splot, 185, 186

background color
setting using rectangle object, 159

backgrounds
creating using objects, 281

backslashes, 242
backtick syntax, 130
bar chart, 76
bar charts, 80–82

3D, 304

complicated, 88
horizontal, 118
stacked, 89, 90
transposing data, 90

behind, 281
Bessel functions, 255
bezier smoothing, 140
binary, 306
binary operators, 325
blocks, 128
border

partial, 38
borders

on 3D plots, 168
box and whisker plot, 69
box plot

3D, 91
boxed

labels, 333
boxwidth, 69, 89
break, 137
breaking lines, 21
broken axes, 324
bugs, 291, 299

in v.5.4rc2, 338

C, 122
C programming language

interface to gnuplot, 138
Cairo, 235
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candlestick plot, 69
candlesticks, 71–73

filled with pattern, 73
cbrange, 155
census data, 261
character

as pointtype, 309
CIA World Factbook, 76
circle objects

arc, 284
circles, 282, 283

plotting with polar coordinates, 43
clear, 259
climate, 141
clusters, 82
cntrparam

levels auto, 191
levels discrete, 193
levels incremental, 192

color calculations, 353
color matching, 157
color names, 18
color palette, 113
colorblindness, 319
colorbox, 155

label, 181
range, 155
size and position, 181

colored axes, 320, 322
colorsequence, 319

podo, 319
column 0, 137
columnstacked, 90
command-line, 130
command-line tools

using from gnuplot, 130
comments, 20
compiling gnuplot, 306
complex numbers, 181
complicated bar charts, 88
continents, 316
continue, 137
contour plot

customizing lines, 193
contour plots, 190

on surfaces, 202
setting automatic levels, 191
setting discrete levels, 193
setting incremental levels, 192

contours
labeled, 195
on surface and base, 203
on surfaces, 202
simulated with palette, 159
thickness, 201
using color palettes, 156

control flow, 136, 137
convert

the ImageMagick command, 248
coolness, 130
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coordinate mapping, 169
coordinate systems, 13, 111

screen, 256
cover illustration, 154
COVID-19, 277, 278
crime statistics, 261
cubehelix, 157–159
custom contour lines, 193
cylindrical coordinates, 169

damped oscillator, 122
dash patterns, 27, 28
dashtype, 27, 28
data blocks, 85, 160, 336
data file

format, 160
data files

plotting, 20
data types, 353
date formatting, 224
date/time plotting, 226
dates and times, 223

columns, 226
require the using command, 226
tic interval, 227
tic range, 229

dense data, 329–331
depthorder, 166, 167, 315
distribution

visualizing, 76

dots plotting style, 330
dt, 27, 28

earthquakes, 317
electric dipole, 336
electrical potential, 337
ellipse objects, 288–291, 293

patterns, 289
setting fill color, 289

ellipses, 300
axes, 293
border color, 290, 291
fill color, 290, 291
units, 293

else, 136
end caps, 299
end-caps, 70
energy sources, 76, 80, 84, 86, 88–91
enhanced text, 110, 241
epscairo, 235
epslatex, 247, 248
epstopdf, 248
eq, 136
equations

using enhanced text, 110
equations of state, 145
error bars, 61–66, 68, 70
error function, 110
errorlines, 64
eval, 286
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every, 85, 124, 162
external control, 138, 139
external processing, 131

fc, 44
fence plots, 314
file

printing to, 137
writing numbers to, 20

filetype, 306
fill, 167

with pattern, 44
fill borders, 290, 291
fill density, 290, 291
fill patterns, 281
fill transparency, 292
fillcolor, 44

by palette fraction, 282
filledcurves, 42, 43
fills

transparent, 290
financebars, 74
fit, 142
fitting functions to data, 141, 142
flags

-c, 132, 133
-e, 132
-p, 132

flow patterns, 335
fontspec, 244

format specifiers
for tic labels, 220

fsteps, 77
functions, 121

discontinuous, 122
of three variables, 335
piecewise, 122

gamma
palette, 157
setting in palettes, 157

geographic
tics, 317

geographic coordinates, 233
geography, 316
geometry, 276
gnuplot

calling from LATEX, 248
invocation, 132

gnuplot.py, 139
gprintf, 127
Greek, 96
grid, 15

data determined, 323
front and back, 39
manually defined, 323
styling, 17

grid lines
styling, 333

grids
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3D, 171, 172
vertical, 172

grids of plots, 255

harmonic oscillator, 122
heat maps, 189

with surfaces, 204, 205
hidden line removal, 148
hidden3d, 148, 149

front, 163
setting top and bottom styles, 151

histeps, 78
histogram, 76
histograms, 78–80

grouping, 81

if, 136
ImageMagick, 248
Imagemagick, 129
images, 306

in 3D, 308
rotation, 307
in 3D, 308

scaling, 307
with splot, 308

imaginary numbers, 181
impulse plots, 327, 328
includegraphics, 235, 239
inset plots, 259, 300
interaction

speed of, 146
internationalization

and month names, 232
and the decimal separator, 232

isolines, 146
colored by data, 150
styling, 149

isosurfaces, 363
multiple, 364

iteration
basic, 92, 123
nested, 125
over blocks, 128, 129
over words, 126

jitter, 325–328
manual, 350, 351
to cure moiré, 344

journalism, 304
JPEG, 306
Jupyter, 6

key, 11
boxed, 99
eliminating sample, 255
horizontal, 101
line spacing, 108
margin placement, 107
maxrow, 107
opaque, 106
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positioning, 11, 12, 108
positioning outside, 22
sample length, 103
samplen, 255
styling, 102
text justification, 104
titles, 105
width and height, 100

key(x), 90

label
for colorbox, 181

labels, 109
boxed, 333
coloring from files, 113
from files, 83
hypertext, 117
offset, 115
on axes, 95
multiline, 96

on contours, 195
on spider plot axes, 278
plotting from files, 112
plotting points with, 114, 115
rotated, 116
using gprintf, 127
with TEX math, 243, 246, 247

LaTeX, 94
latitude, 233, 316, 317
Left

key option, 104
libgd-dev, 306
lighting, 164, 305
linecolor

palette z, 113
linecolor pal, 271
linecolor var, 273
linetype

of contours, 201
linetypes, 16, 17, 151, 273

in contour plots, 193
linewidth, 10, 77

of contours, 201
Linux, 94, 306
lmargin, 219
load, 132
locale, 232
logic, 136
logic operators, 137
longitude, 233, 316, 317
looping, 92, 123
lt, 16, 17
lualatex, 238, 250
lw, 10
L’Hôpital’s Rule, 243

macros, 134
manual plot positioning, 256
mapping, 316
margins
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at screen, 257
making space for tic labels, 219

market price data, 72
market price fluctuations, 74
mathematicians, 235
maximum, 143
mean:, 143
medical imaging, 335
minimum, 143
minor tics, 209
miscellaneous, 304
modulo, 325
moiré

in voxel plots, 344
monochrome, 19

palette, 154
mouse, 147
movies, 129
multidimensional data, 261
multiple curves

plotting, 18
multiple dimensions, 56
multiple plots

overlapping, 313
multiple surfaces, 162

pm3d with mesh, 163
multiplot, 253, 322, 324

and keys, 254
inset plots, 259
interactive use, 253

layout, 255
manual plot positioning, 256
precise alignment, 257, 258

multiplot-chapter, 23
multivariate data, 261
mx2tics, 210
mxtics, 209
my2tics, 210
mytics, 209

new features
v.5.2, 161
v.5.4, 91, 172, 179, 193, 275, 295, 301, 304, 335

newhistogram, 88
newspiderplot, 276
nomirror, 22
numpy, 139

objects, 280
circles, 282, 283
drawing without plotting, 282
ellipse, 288–291, 293
polygon, 294
rectangles, 281
for background color, 280

redefining, 280
removing, 280
tags, 280

offset, 59, 97
offsets



Lee Phillips: Gnuplot 5 2nd ed. Index 388

tic labels, 221
onecolor, 201
operators

binary, 325
ternary, 122

or operator, 137
overlapping points, 325–328

palette, 113, 154
discontinuous, 156
gamma, 157
greyscale, 154, 155
monochrome, 154

palette definition, 155
palette discontinuities, 156
palette z, 113
palettes

cubehelix, 157–159
good and bad, 157

papers, 235
parallel axis plots, 261, 264, 265

aligning axes, 269
coloring data lines, 271, 273
paxis ranges, 269
transparent data lines, 273

parallel coordinate plots, 261
parametric plots, 52

3D paths, 165
3D surfaces, 166

pattern fills, 44

paxis
setting tics, 265

PDF attachments, 120
pdfcairo, 235, 236
pdflatex, 238
persist flag, 132
PGF, 249
physicists, 235
pictures, 306
pie chart, 284, 285

automated, 285
pie charts, 286
pixmaps, 301
plot

with iteration, 92, 123
plot positioning

manual, 256
plotting a function, 7
plotting multiple curves, 18
pm3d, 152

and heat maps, 189
depthorder setting, 166
explicit mode, 183
history, 152
implicit mode, 183
lighting, 164
scanning options, 167
showing isolines, 153
transparent, 167

pm3d surface
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with embedded vectors, 200
PNG, 306
pngcairo, 235
podo

colorsequence, 319
pointinterval

with voxel splotting, 342
pointsize, 67
pointtype

from data, 310
using a character, 309

pointtypes, 58
polar coordinates, 40, 41, 43
polar plots, 283
Polygons

3D, 295
polygons, 294
portable shapes, 294
PostScript, 237
Preview

the Macintosh program, 248
printer

3D, 145
programming, 137

with scripts, 120
programs

calling gnuplot from, 138, 139
pseudocolumn, 137
pt, 58
Python

interface to gnuplot, 139

quirks, 297
quoting, 242

radar chart, 275
range

with dates and times, 230
range-frame graphs, 50
ranges, 8

defining local variables, 54
setting in plot command, 51, 53

rectangles, 281
redirection, 131
relative coordinates, 294
reset, 6
resolution-independence, 236
reverse

key option, 104
rgbimage, 306
rotate parallel, 186
rotation

using mouse, 147
rto, 294

sample, 311, 312
samples, 24

in 3D, 146
sampling, 24

of surfaces, 148
scaling bunched data, 265
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scatterplot, 261
using transparent points, 261

scatterplots, 329–331
screen coordinates, 256
scripting

passing arguments, 286
scripts

with arguments, 133
second y-axis, 21
security

in TEX, 250
set

with iteration, 123
set auto fix, 59
set datafile sep, 265
set errorbars, 62
set format, 220
set grid vertical, 172
set hidden3d offset, 151
set key outside, 22
set origin, 256
set print, 137
set size, 256
set size ratio, 43
set size square, 43, 282, 293
set surface, 184
set table, 20
set term

SVG options, 117
set tics geographic, 317

set view
map, 189

set xdata time, 224
shell commands

using from gnuplot, 130
shell-escape

the TEX argument, 250
shorthand notation, 58
show colors, 18
skipping data points, 267
skipping rows, 85
smoothing, 140, 141
socket

connection to gnuplot, 138
solar energy, 141
special characters, 94
special filenames

+, 124
++, 161

special functions, 110
Bessel functions, 255

spherical coordinates, 169
spider plots, 275

with transparency, 277, 278
spiral Archimedes’, 40, 41
spirograph, 41
splot, 146, 160, 314

for voxels, 339
pm3d colored surfaces, 152
with “above” clause, 340
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sprintf, 127, 128
square graphs, 282
square plots, 43
statistics, 69
stats, 143
step styles, 77
steps, 77
string comparison, 136
string concatenation, 86
string formatting, 127
stringcolumn, 86
style

for boxed text, 333
stylish, 332

substr, 92
surface

colored by data, 150
solid, 148

surface plot, 146
surface plots

colored, 152
with heat maps, 204, 205
with hidden lines, 148
with intersecting xyplane, 205

surfaces
multiple, 162
with contours, 202
with embedded vectors, 199

SVG, 117, 237

termoption, 77
ternary notation, 337
ternary operator, 122
test, 151
test command, 16, 28, 44
three dimensional bar charts, 304
tic color, 321
tic interval

date/time plotting, 227
tic labels

containing text, 220
making them fit, 219
offsets, 221
with line breaks, 228

tic range
date/time plotting, 229

tics, 208
adding additional, 217, 218
formatting
using gprintf, 127

increment, 215
manual, 216
minor, 209
on zeroaxis, 36, 37
outward, 214
removing, 213
rotating, 84
scale, 211, 212
setting font, 219
setting length, 211, 212
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setting minor length, 212
setting values, 215
with no labels, 222

tikz, 240–244, 246, 247, 249, 251
drawing commands, 250
slow with complex plots, 251

time formatting, 224
timefmt, 224
title, 13
title col, 87, 90
titles

in data files, 87, 90
of curves, 14

trange, 40
transparency, 237

in fills, 290, 292
transparent

pm3d surfaces, 167

u, 58
Unicode, 14, 94, 309

and PostScript, 237
urange

when using ++, 161
using, 58, 60

calculating with, 60
”every” subcommand, 162

v.5.4
unlimited parallel axes, 264

var, 67
variable point size, 67
variables, 121
vclear, 335
vector plot

with pm3d surface, 200
vector plots, 198

on a surface, 199
vfill, 337, 338
vgrid, 335
view, 147

showing, 147
visualization, 157
voxel plots, 335

using coordinate files, 348
with curvilinear slice, 361
with diagonal slice, 360
with intersecting line, 362
with slice, 358
with slices, 359
with transparent points, 354
with varying opacity, 356
with varying pointsize, 357

VoxelDistance, 338
voxels, 335
vrange

when using ++, 161
vxrange, 336

walls, 179
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water molecule, 336
weather, 145
Web

and PDF, 237
and SVG, 237

while, 137
whisker plot, 69
wireframes, 146
with candle, 69
with dots, 330
with labels, 112
words, 286
world.dat, 316
wrapfig, 238
write-18

the TEX argument, 250
writing to a file, 137

xelatex, 238
xerrorbars, 66
xrange, 8
xticlabels, 83, 86, 92
xyerrorbars, 61
xyerrorlines, 64
xyplane, 170, 205

y-axis
effective use of second, 320, 322

y2 axis, 21
y2tics, 22

yerrorbars, 65
yrange, 9

zeroaxis, 34–37, 321
zerrorfill, 314, 315

π, 8
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